Porting and Optimizing CompCert for an interlocked

VLIW processor

Cyril Six (CIFRE PhD student)
Supervised by:
Sylvain Boulmé (Verimag PACSS)
Benoit Dupont de Dinechin (Kalray)
David Monniaux (Verimag PACSS)

cyril.six@univ-grenoble-alpes.fr
sylvain.boulme®@univ-grenoble-alpes.fr
benoit.dinechin@kalray.eu
david.monniaux@univ-grenoble-alpes.fr

November 25th, 2019

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 1/45

@ PACSS team - Proofs and Code analysis for Safety and Security

o David Monniaux, CNRS senior researcher
o Sylvain Boulmé, researcher

@ Kalray - Fabless semiconductor company based in Grenoble
e Benoit Dupont de Dinechin, CTO

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 2/45

Presentation plan

@ Introduction
@ VLIW in-order processors
@ Coq and CompCert architecture

© Our work
@ Formal blockstep semantics for VLIW in CompCert
o Certified intrablock postpass scheduling

© Results

@ Experimentations
@ Future and ongoing work

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 3/45

Outline

© Introduction
@ VLIW in-order processors

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 4/45

Kalray processor

Mailbox Co-pracessor
CHN - Elemantary

Crypto

Atc
Local
o Memaory
L1} L

4MB

2 3 SMEM

L2%

GPID cAN ! I 8 9
an
wr v 10| 1

MANYCORE PROCESSOR COMPUTE CLUSTER 3RD GENERATION VLIW CORE

@ 1 processor = 5 compute clusters

@ 1 compute clusters = 16 cores @ (600MHz - 1.2GHz)

@ Network on Chip allowing point-to-point communication
@ Main DDR memory of 4 GB

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 5 /45

Kalray VLIW klc core

Co-processor
CNN - Elementary

@ ALU: Arithmetic-Logic Unit (x2)
e LSU: Load-Store Unit

e MAU: Multiply-Accumulate Unit
@ BCU: Branch Control Unit

ALUO
Double Full

64x64-bit user registers per core

@ Very Large Instruction Word (VLIW): explicit Instruction Level
Parallelism

@ 5 execution units: ALUO, ALU1, LSU, MAU, BCU

@ In-order, pipelined execution

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 6 /45

Example of klc code

addw

mulu
addw
addw
addw

mulu

addw

$r2

$r2 =
$r0 =

$r0 =
= $r0, 0 /x ALU + ALU */

$r1

$r1

j toto

$r1, $r0 /x ALU x/

/* bundle delimitor x/
$r2, 2
$r2, $r1 /x MAU + ALU x/

$r1, O

= %r1, 2
$r3 =

$r2, 42
/x BCU + ALU + MAU x/

@ Bundles are explicitly delimited by the programmer/compiler
@ In-order execution
@ Parallelism inside each bundle

Cyril Six (PACSS & Kalray)

CompCert VLIW scheduling November 25th, 2019 7/45

In-order vs out-of-order

@ More predictible, more precise computation of Worst Case Execution
Time (WCET)
@ Simpler control structure

o Uses less CPU die space and energy
o May be more reliable (less complex design)

@ => Good for safety-critical applications

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 8/45

Klc pipeline

int add4(int *xt){
return (t[0] + t[1] + t[2] 4+ t[3]);

add4:
lwz $r1 = 0[$r0]

lwz $r4 = 4[$r0]

); 2 cycles stall ($r4) x/
addw $r1 = $r1, $r4

lwz $r3 = 8[$r0]

); 2 cycles stall ($r3) x/
addw $r0 = $r1, $r3

lwz $r2 = 12[$r0]

):k 2 cycles stall ($r2) %/
addw $r0 = $r0, $r2
ret

13 cycles

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 9 /45

Klc pipeline

int add4(int *xt){
return (t[0] + t[1] + t[2] 4+ t[3]);

add4:
lwz $r1 = 0[$r0]

Cycle Issue [Read Regs [E1l [E2 [E3]

1| mzg | [T]

lwz $r4 = 4[$r0]

); 2 cycles stall ($r4) x/
addw $r1 = $r1, $r4

lwz $r3 = 8[$r0]

); 2 cycles stall ($r3) x/
addw $r0 = $r1, $r3

lwz $r2 = 12[$r0]

):k 2 cycles stall ($r2) %/
addw $r0 = $r0, $r2
ret

13 cycles

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 9 /45

Klc pipeline

int add4(int *xt){
return (t[0] + t[1] + t[2] 4+ t[3]);

add4:
Ilwz $r1 = 0[$r0] Cycle Issue Read Regs E1l E2 E3
i ro
lwz $ra = 4[$r0] | ez -
.. 2 Iwzrg Iwz/y

); 2 cycles stall ($r4) k/
addw $r1 = $r1, $r4

lwz $r3 = 8[$r0]

); 2 cycles stall ($r3) x/
addw $r0 = $r1, $r3

lwz $r2 = 12[$r0]

):k 2 cycles stall ($r2) %/
addw $r0 = $r0, $r2

ret

13 cycles

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 9 /45

Klc pipeline

int add4(int *xt){
return (t[0] + t[1] + t[2] 4+ t[3]);

add4:
Ilwz $r1 = 0[$r0] Cycle Issue Read Regs E1 E2 E3
i r0
Iwz $r4 = 4[$r0] 1 fwzy -
. 2 Iwz/ g Iwz/y
/* 2 cycles stall ($r4) k/ 3 addr':,l_’rA /wz,"'ij /wzr'f
addw $r1 = $r1, $r4

lwz $r3 = 8[$r0]

); 2 cycles stall ($r3) x/
addw $r0 = $r1, $r3

lwz $r2 = 12[$r0]

):k 2 cycles stall ($r2) %/
addw $r0 = $r0, $r2
ret

13 cycles

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 9 /45

Klc pipeline

int add4(int *xt){
return (t[0] + t[1] + t[2] 4+ t[3]);

add4:
Ilwz $r1 = 0[$r0] Cycle Issue Read Regs E1 E2 E3
i r0
Iwz $r4 = 4[$r0] 1 fwzy -
. 2 Iwz/ g Iwz/y
/* 2 cycles stall ($r4) k/ 3 addr':,l_’rA /wz,"'ij /wzr'f
addw $r1 = $r1, $r4 4 wzl2 add ™ wz'd | wz?

lwz $r3 = 8[$r0]

); 2 cycles stall ($r3) x/
addw $r0 = $r1, $r3

lwz $r2 = 12[$r0]

):k 2 cycles stall ($r2) %/
addw $r0 = $r0, $r2
ret

13 cycles

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 9 /45

Klc pipeline

int add4(int *xt){
return (t[0] + t[1] + t[2] 4+ t[3]);

add4:
Ilwz $r1 = 0[$r0] Cycle Issue Read Regs E1l E2 E3
i ro
Iwz $r4 = 4[$r0] 1 fwzy -
.. 2 Iwz/ g Iwz/y
/x 2 cycles stall ($r4) ¥/ 3 addr':,l_’rA Iwzlg Iwz?
addw $r1 = $r1, $r4 4 Iwzl add:"‘ Iwzl® Iwzl9
i 0 ri;rd 0 0
lwz $r3 = 8[$r0] 5 wz/3 add y STALL wz/g wz/y

); 2 cycles stall ($r3) x/
addw $r0 = $r1, $r3

lwz $r2 = 12[$r0]

):k 2 cycles stall ($r2) %/
addw $r0 = $r0, $r2
ret

13 cycles

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 9 /45

Klc pipeline

int add4(int *xt){
return (t[0] + t[1] + t[2] 4+ t[3]);

add4:
I_VYZ $r1 = 0o[$r0] Cycle Issue Read Regs E1l E2 E3
lwz $r4 = 4[$r0] L Iz -
.. 2 Iwz/ g Iwz/y
); 2 cycles stall ($r4) k/ 3 addr':,l_’rA Iwzlg Iwz?
addw $rl = $r1, $r4 4 wzl2 add’y ™ wzl® | wzl?
fwz $r3 = 8[$r0] 5 Iwz!Q add’3 ™ STALL | mz?d | mz?
. 6 Iwzl9 addy "™ STALL | STALL | Iwz'2
); 2 cycles stall ($r3) k/

addw $r0 = $r1, $r3
lwz $r2 = 12[$r0]

):k 2 cycles stall ($r2) %/
addw $r0 = $r0, $r2
ret

13 cycles

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 9 /45

Klc pipeline

int add4(int *xt){
return (t[0] + t[1] + t[2] 4+ t[3]);

add4:
I_VYZ $r1 = 0o[$r0] Cycle Issue Read Regs E1l E2 E3
iwz $ra = 4[$r0] L Iz -
.. 2 Iwz/ g Iwz/y
); 2 cycles stall ($r4) x/ 3 addr':,l_’rA Iwzlg Iwzr?
addw $r1 = $r1, S$r4 4 /wz:g add:‘ra Iwzlfg Iwzlfg
fwz $e3 = 8[$r0] 5 Iwz!? add’3 ™ STALL Iwzlg Iwzf?
. 6 Iwz9 add; "™ STALL | STALL | Inz2
/e 2 cycles stall ($r3) k/ 7 add’g "™ IwzlQ add3™ | STALL | STALL

addw $r0 = $r1, $r3
lwz $r2 = 12[$r0]

):k 2 cycles stall ($r2) %/
addw $r0 = $r0, $r2
ret

13 cycles

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 9 /45

Klc pipeline

int add4(int *xt){
return (t[0] + t[1] + t[2] 4+ t[3]);

add4: add4:
lwz $r1 = 0[$r0] lwz $r1 = 0[$r0]
lwz $r4 = 4[$r0] lwz $rd = 4[$r0]
/v 2 cycles stall ($rd) =/ lwz $r3 = 8[$r0]

addw $r1 = $r1, $r4 i
B lwz $r2 = 12[$r0]
lwz $r3 = 8[$r0]

iy a’(’idw $r1 = $r1, $r4
/* 2 cycles stall ($r3) x/ ..

addw $r0 = $r1, $r3 e;t;idw $r0 = $r1, $r3
lwz $r2 = 12[%r0] e;&dw $r0 = $r0, $r2
):k 2 cycles stall ($r2) %/ r:’et

addw $r0 = $r0, $r2 i
ret

13 cycles 8 cycles

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 9 /45

Compilers and VLIW processors

@ VLIW compilers should be able to generate bundles to have a good
performance

@ Instructions should also be reordered to minimize the latencies

@ => This is usually done by a scheduling pass, after register allocation

Code to schedule.. After scheduling

add4: # Sched time add4:
lwz $r1 = 0[$r0] # 0 lwz $r1 = 0[$r0]
lwz $r4 = 4[$r0] # 1 i3
addw $rl1 = $r1, $r4 # 3 Ilwz $r4 = 4[$r0]
lwz $r3 = 8[$r0] # 2 58
addw $r0 = $r1, $r3 # 5 lwz $r3 = 8[$r0]
lwz $r2 = 12[$r0] # 3 78
addw $r0 = $r0, S$r2 # 6 lwz $r2 = 12[$r0]
ret # 6 addw $rl1 = $r1, S$r4
addw $r0 = $r1, $r3
addw $r0 = $r0, $r2

ret

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 10 /45

Register allocation and scheduling

@ Register allocation

o Allocates physical registers (bounded) to virtual registers (unbounded)
o Performs “spilling” if not able to

@ Instruction scheduling

o After register allocation (postpass): more precise informations, can
make bundles, but extra dependencies on registers

o To deal with the register dependencies: instruction scheduling before
register allocation (prepass)

@ We present here the postpass scheduling optimization

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 11 /45

Outline

© Introduction

@ Coq and CompCert architecture

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 12 /45

Coq in a few words

@ Programming language with a proof assistant
@ Idea: you write programs in the Coq functional language..

Fixpoint sum list (I: nat list) : nat :=
match | with
| nil = 0
| er:l —> e + sum_list |
end .

@ .. and then you prove them!

Theorem sum list distributive:

forall | 1", sum list (I4++l") = sum list | 4+ sum _list |’
Proof.
Qed.

@ Advantage: the proof is machine checked, so less prone to human
errors

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 13 /45

CompCert in a few words

@ Machine checked, formally verified compiler: proof of specification
preservation

@ Written in Coq and OCaml

o Targets: PPC, ARM, RISC-V, x86

@ Performance: close to GCC -01

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 14 /45

CompCert architecture

side-effects out of type elimination
expressions loop simplification
CompCert C Clight C#minor
L stack allocation
optimizations .
of variables
CFG construction instruction
expr. decomp. = selection —
RTL CminorSel Cminor
register
allocation
linearization layout of assembly
of CFG /1 stackframes — code generation
LTL Linear Mach Asm

branch tunneling

@ What we want: intrablock postpass scheduling at Asm level

@ Drawing on board

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 5 /45

Our modifications to the CompCert architecture

Basic-block Assembly Intrablock postpass

tructi code generation scheduling
Machblock Asmblock —— >[AsmvLiw

AbstractBasicBlock

@ Machblock and Asmblock: one block = one basic block, sequential
semantics
@ AsmVLIW: one block = one bundle, parallel semantics within a bundle

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 16 / 45

Outline

© Our work
@ Formal blockstep semantics for VLIW in CompCert

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 17 / 45

Semantics of Asm

State: (rs, m)

Registers state rs: mapping from registers (PC, R4, rl, r2, ..) to values
Memory state m: mapping from addresses to values

exec_instr: function —> instruction —> regset —> mem —> outcome
outcome: either Stuck, or Next rs’ m’
Instructions reside in memory, and are pointed by PC register
Exemples of execution:
o (exec_instr f (Pcall s) rs m) returns (rs[RA < rs[PC|; PC < @s], m)
o (exec_instr f (Paddd r0 rl r2) rs m) returns
(rs[ro = rs[r] + rs[r2]], m)

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 18 /45

Formal definition of a basic block

Inductive basic: Type := (x basic instructions x)
Inductive control: Type := (% control—flow instructions x)
Record bblock := {

header: list label; body: list basic; exit: option control;

correct: wf bblock body exit (% must contain at least 1 instr. x)

}

@ Exemples: Pcall is a control, Paddd is a basic.

@ We use a bblock for basic blocks (sequential) and bundles (parallel)
alike

e Executing the bblock (Ry := Ry; R1 := Rop; jump @toto) in parallel
should lead to rs[Ry < rs[Ri]; R1 < rs[Ro]; PC <+ Qtoto]

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 19 /45

Parallel deterministic in-order semantics

@ Idea: have a memorized state for the reads, and a running state for
the writes
@ Instead of (rs, m), we use four components in a bundle execution:

e rsr, mr: the regset and the memory state, prior to executing the bundle
o rsw, mw: the running state, where all the writes will occur (in order)

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 20 /45

Parallel deterministic in-order semantics

@ Idea: have a memorized state for the reads, and a running state for
the writes
o Instead of (rs, m), we use four components in a bundle execution:

e rsr, mr: the regset and the memory state, prior to executing the bundle
e rsw, mw: the running state, where all the writes will occur (in order)

rsr,rsr) bstep (rsr,rswl) bstep bstep (rsr,rswn) estep (rsr,rswnﬂ)
r,mr mr,mwy mr,mw, mr,mw,

()

(I’SWn+1)
mwpia

parexec_wio f [by; ba; - - ; bp] ext sz

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 20 /45

Parallel deterministic in-order semantics

@ Idea: have a memorized state for the reads, and a running state for
the writes
o Instead of (rs, m), we use four components in a bundle execution:

e rsr, mr: the regset and the memory state, prior to executing the bundle
e rsw, mw: the running state, where all the writes will occur (in order)

rsr,rsr bstep (rsr rswy\ bstep bstep (rsr rsw, estep rSr,rswpiy
r.mr mr,mwy mr.mw, mr,mw,

()

(fSWn+1>
mwpia

parexec_wio f [by; ba; - - - ; bp] ext sz

@ This first version models an atomic parallel execution, where:
o All reads are done in parallel, prior to any write
e The writes are done sequentially in the same order
e Example: (Ry := R1; R1 := Rp; jump @toto)
o rswy = rsr[Ry < rsr[Ry]] = rs[Ro < ri]
o rswyp = rswi[Ry + rsr[Ro]] = rs[Ro + ri; Ry < ro)
o rs' = rswz = rsw,[PC «— Qtoto] = rs[Ry + r1; Ry < ro; PC < Q@toto]

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 20 /45

Extending the semantic

@ Issue with the semantic: does not model the possibility of concurrent
writes

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 21 /45

Extending the semantic

@ Issue with the semantic: does not model the possibility of concurrent
writes

@ Solution: say in Coq “Executing bundle b with initial states (rs, m)
gives outcome o iff there exists a permutation of writes of b that gives
o by the previous semantic (deterministic in-order)”

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 21 /45

Extending the semantic

@ Issue with the semantic: does not model the possibility of concurrent
writes

@ Solution: say in Coq “Executing bundle b with initial states (rs, m)
gives outcome o iff there exists a permutation of writes of b that gives
o by the previous semantic (deterministic in-order)”

@ To determinize it: only accept outcomes if they are unique

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 21 /45

Basic-block Assembly Intrablock postpass

reconstruction code generation scheduling
Machblock Asmblock ————>[AsmvLiw

AbstractBasicBlock

@ How to reorder a block from Asmblock into several bundles of
AsmVLIW, and prove it correct?

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 22 /45

Outline

© Our work

o Certified intrablock postpass scheduling

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 23 /45

Forward simulations in CompCert

@ Simulation diagrams are used to prove semantic preservation
@ For this transformation, we use the Lock-step and the Plus simulations

S5 — 5 S —— S
14t t L 14t t§+ Ly

o Lock: If S, 5 S!'and S; ~ Sy, then 35,5, — Shand S| ~ S5

stele stepL2

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 24 /45

Previous work of J.B. Tristan on scheduling

@ Gallium PhD 2009 by J.B. Tristan, Formal verification of translation

validators
Scheduling

OCaml (untrusted)

Coq (trusted)

cg —— i Verification f—nx—

Error o — ..

@ Verification proof: V(ci,) =true = ¢ ~ ¢

@ Advantages: easier to prove and modular

@ Implemented it at the Mach level, with symbolic evaluation
@ Drawbacks: scalability issue + Mach level

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 25 /45

Architecture of the pass Asmblock -> AsmVLIW

Error
Asmblock B PostpassScheduling /YAsmVLIW
> e
Program Module Program

OK/Error
B, 1b

AbstractBasicBlock
Verifiers

Coq (trusted)

OCaml (untrusted)
Scheduler Hash Consing

@ Axiom schedule: bblock —> list bblock.
@ Forward simulation in two parts:
e Proving reordering, in sequential semantics: plus simulation
e Proving for each bundle that parallel execution = sequential execution:

lockstep simulation
@ (Drawing on board)

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 26 /45

AbstractBasicBlock

@ New language called AbstractBasicBlock to abstract the details of
instructions

@ Put “This instruction writes in that register, and reads in this and that
registers” in a canonical form

Inductive exp :=

| Read (x:R.t) | Op (o:op) (le: list_exp) | Old (e: exp)
with list exp :=

| Enil | Econs (e:exp) (le:list _exp) | LOId (le: list exp).
Definition inst := list (R.t % exp). (* list of assignments x)

@ The assignments can be executed sequentially or in parallel
@ Examples of traductions:

o Picall r => [#RA < Read(#PC); PC <— Read(#r)]
o Paddw r0 rl r2 => [#ry < (OpAddw[#r1; #r2])]
@ We use it to execute symbolically the instructions

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 27 /45

Intrablock Reordering verifier of AbstractBasicBlock

bblock_simu

Asmblock B - - > tb

. . ~ ~

compilations | bisimulation |

(by trans_block) w w

4 N

AbstractBasicBlock LT ’ :

symbolic executions ! bisimulation !
with hash-consing of terms ! B

Symbolic memories simulated by

@ Symbolic execution: computing symbolic memories, final value of the pseudo
register in function of the initial values.
@ Example:
o Bi=[n:=n+n; rn:=load[rn,m];, n:=n+]
o By=[r:=load[r,m|;, n:=rn+r; n:=n+rn]
@ These two blocks are equivalent to this assignment:
[n < (n+)+ load[rz, m] || r3 < load[r2, m]]|

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 28 /45

The untrusted scheduler in a few words

@ We want to assign a scheduling date to each instruction
@ This schedule should satisfy two constraints:
e Latency constraints: we must respect the dependencies of each
instruction
o Resource constraints: a bundle must not consume more resources than

available
@ (drawing on board)

@ We implemented several schedulers:
o Naive greedy one, just packs instructions together (linear time)
e Variant of Coffman-Graham list scheduler, with critical path heuristic
(linear time)
o Optimal list scheduler by Integer Linear Programming + branch and
bound (not linear)
e Experimentally, we barely get better results with ILP than with list
scheduling

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 29 /45

Outline

© Results

@ Experimentations

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 30/45

Experimental time of the oracle and verifier

X Verifier e
+ Oracle /iﬁ
-
100 4 slope of 1 '

O

o

o

S 1071 4

x

)

£

=

10-2 4

10° 10t 10?2
Size of basic blocks

@ Timings obtained by instrumenting the OCaml code

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 31/45

O
c
(O]

X
O
T

o)
(-
>
o
=
o
(2]
c

.2

i)
(@]
N
£
4+
o
o
(]
=
4
G
o
4
O
(g)
o
£

100%

Ll 2 02222220222 n
e e e s e
AANAA - —— b

A A A VA A VA WA -

o

P 7702022222022 22 7228
B e e gy e)

B ES]]]]
8 S S S S S
4 2] g &

&

X o ©
o © 2
o «\eﬁ" \Qp’q

x ©
o o
O e

o

o

up to 100%

%

@ Impact of scheduling: average gain of 25

32/45

November 25th, 2019

CompCert VLIW scheduling

Cyril Six (PACSS & Kalray)

O
O
O
-~
k=
2
c
O
2
@
o
S
(@)
O

8

0% =

S K 8
)) B
8 2 8

100%
fastest
60

@ Results to take with a pinch of salt: GCC backend still in development

@ Always better than -O0: 2 to 17 times better

@ For most benchmarks, faster than -O1 by 20%. Sometimes better than -O2 and -03.

@ For most others, between 20% and 30% slower than GCC -O3

33/45

November 25th, 2019

CompCert VLIW scheduling

Cyril Six (PACSS & Kalray)

Optimizations that GCC do compared to us

Certain strength reductions (replacing multiplication in loop by
addition)

Code motion across basic blocks (e.g. loop invariant code motion)
Loop unrolling and other loop optimizations

Prepass scheduling

Memory alias analysis

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 34 /45

Outline

© Results

@ Future and ongoing work

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 35 /45

Towards prepass scheduling

@ WIP: Prepass superblock scheduling in RTL
o Blocks with one entry point, several exits
@ Pass of instruction duplication (tail duplication)

o Verifier done and proved!
e Heuristics to implement

@ Integration of non-trapping loads
e Almost done

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 36 /45

@ Integrate memory alias analysis in the checker

o Instead of viewing memory as a single pseudo register, have something
more elaborate

@ Other optimizations..

o Loop invariant code motion?
e Loop unrolling?

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 37/45

Thanks for your attention

Do you have any questions?

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 38 /45

Parallel in-order semantics (2)

Fixpoint parexec_wio body bdy rsr rsw mr mw : outcome :=
match bdy with
| nil => Next rsw mw
| bi::bdy' => NEXT rsw', mw <— bstep bi rsr rsw mr mw
IN parexec_wio_ body bdy' rsr rsw’' mr mw'
end .

Definition parexec wio f bdy ext sz rs m :=
NEXT rsw', mw' <— parexec_wio_ body bdy rs rs mm

IN estep f ext sz rs rsw' mw'.

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 39 /45

Non deterministic parallel semantics

@ (parexec_bblock f b rs m o) holds if there exists a permutation of
writes that gives o by a deterministic in-order execution

@ We can reason on permutations of instructions instead of
permutations of writes

Definition parexec bblock f b rs m o: Prop :=
exists bdyl bdy2, Permutation (bdyl ++ bdy2) b.(body)
/\ o=(NEXT rsw', mw" <— parexec _wio f bdyl b.(exit)
(Ptrofs.repr (size b)) rs m
IN parexec _wio body bdy2 rs rsw’' m mw').

@ We would like to determinize it, to use in CompCert

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 40/ 45

Deterministic out-of-order parallel semantics (2)

o (det parexec f b rs mrs’ m’) holds if: (rs’, m’) is the unique
outcome of the non-deterministic parallel execution

Definition det parexec f b rs m rs' m': Prop :=

forall o, parexec_ bblock f b rs m o —> o = Next rs’'

@ Remark: in this semantic, Stuck executions cannot happen

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019

m .

41/ 45

ractBasicBlock (2)

@ Translation from AsmVLIW to AbstractBasicBlock:
trans_block: bblock —> (list inst)

@ We prove a bisimulation for sequential, and a bisimulation for parallel
semantics

Bisimulation for sequential:

match states (State rs m) s —>
match _outcome (exec bblock ge fn b rs m)
(exec Ge (trans_ block b) s).

Bisimulation for parallel:

match states (State rsl ml) sl1' —>
parexec bblock ge fn b rsl ml 02 —>
exists 02', prun Ge (trans_ block b) sl1’ o2’
/\ match outcome 02 02'.

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 42 /45

Parallelizability checker through AbstractBasicBlock

o We translate the bundle to a block of AbstractBasicBlock

@ We prove the following theorem with the sequential bisimulation +
parallel bisimulation + correctness of is parallelizable + other
minor lemmas:

bblock para_ check bundle = true —>
exec bblock ge f bundle rs m = Next rs' m" —>
det parexec ge f bundle rs mrs’' m'.

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 43 /45

Towards proving reordering

@ Definition of bblock simulation:

Definition bblock simu ge f b b’ :=
forall rs m, exec_ bblock ge f b rs m <> Stuck —>
exec bblock ge f b rs m = exec bblock ge f b’ rs m.

@ Definition of a concatenation function, and a predicate (is_concat b Ib), where Ib is a
list bblock

@ Definition of a function (verified schedule b) that:

@ Calls the oracle, retrieving a list of bundles
@ Concatenates together the bundles to form a bblock B
@ Calls the reordering verifier from AbstractBasicBlock (detailed later)

@ We then prove the following property:
Theorem verified schedule correct: forall ge f B Ib,

(verified schedule B) = (OK Ib) —>
exists tb, is_concat tb Ib /\ bblock simu ge f B tb.

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 44 / 45

Verified hash consing

Error
Asmblock B Postpassscheduling 1b AsmVLIW
Program Module Program

0K /Error
B, 1b

AbstractBasicBlock
Verifiers

Coq (trusted)

OCaml (untrusted)
Scheduler Hash Consing

@ Memoization involves calling an untrusted OCaml oracle to give memoized terms out of

terms
@ Dynamic checker in Coq that ensures the memoized term and the term have the same

evaluation function
@ Check done with OCaml pointer equality

@ Axiom: if pointer equality returns true, then the two values are structurally equals

Cyril Six (PACSS & Kalray) CompCert VLIW scheduling November 25th, 2019 45 / 45

	Introduction
	VLIW in-order processors
	Coq and CompCert architecture

	Our work
	Formal blockstep semantics for VLIW in CompCert
	Certified intrablock postpass scheduling

	Results
	Experimentations
	Future and ongoing work

