
A Coiterative Synchronous Semantics
(work in progress)

Marc Pouzet

Ecole normale supérieure
Paris

Marc.Pouzet@ens.fr

Synchron 2019

1 / 47

Marc.Pouzet@ens.fr

Objective

Give a direct executable (functional) semantics to a synchronous program.

Without having to compile: before scheduling, normalisation, inlining, etc.

Make proofs based on simple unfolding/computations.

Treat both data-flow and control structures (hierarchical automata).

An old idea of Florence (Maraninchi): execute unfinished programs.

E.g., programs that do have a semantics but are rejected by the compiler
because its checks are overly constraining.

2 / 47

The two works we used

The (old) work with Paul Caspi, “a Coiterative Characterization of
Synchronous Stream Functions” [CP98].

The paper “Circuits as streams in Coq, verification of a sequential
multiplier” by Christine Paulin [PM95].

3 / 47

The language kernel

A first-order, Lustre-like kernel.

d ::= let f = e | let node f x = e | d d

e ::= c | x | (e, e) | f e | run f e | prec(e) | e fby e

| fst(e) | snd(e)
| let x = e in e | let rec x = e in e

| if e then e else e

| present e do e else e | reset e every e

• f e is the application of a combinatorial function.
• run f e is the application of a node.
• prec(e) is the delay initialised with the constant c .
• e1 -> e2 is a shortcut for if pretrue(false) then e1 else e2

4 / 47

Static Typing

5 / 47

Typing rules
We consider only first order functions.

σ ::= ∀α1, ..., αn.gt | gt
gt ::= t

k→ t | t
t ::= t × t | bt | α
k ::= 0 | 1

• t1
k→ t2 with k ∈ {0, 1} its sort is the type of a function.

• 0 means that the function is combinatorial;
• 1 means that the function is stateful;
• (t1 × t2) is the product type;
• bt is a base type (e.g., bool, int, float).

Historial note: Kinds were introduced in Lucid Synchrone [Pou06] in
version 2 (2000); they are used in the type system of Scade 6 [CPP17].

6 / 47

Examples (in Zelus)
E.g., the following functions (written in Zelus) are well typed. 1

let node from(x) =
let rec f = x fby (f + 1) in f

let incr x = x + 1

On the contrary, the following is rejected.

let from(x) =
let rec f = x fby (f + 1) in f

> let rec f = x fby (f + 1) in f
> ^^^^^^^^^^^^^
Type error: this is a stateful discrete expression and
is expected to be combinatorial.

1The second form ask incr to be a combinatorial function, i.e., to have a type of
the form .

0→ .
7 / 47

Semantics

8 / 47

We give a semantics to well-typed expressions and definitions only.

To simplify the presentation, we consider the same language but where
every expression/sub-expression is annotated with its kind and type.

9 / 47

Streams processes
A stream process producing values in the set T is a pair made of a step
function of type S → T × S and an initial state S .

CoStream(T ,S) = CoF (S → T × S ,S)

Given a process CoF (f , s), Nth(v)(n) returns the n-th element of the
corresponding stream process:

Nth(CoF (f , s))(0) = let v , s = f s in v
Nth(CoF (F , s))(n) = let v , s = f s in Nth(CoF (f , s))(n − 1)

Two stream processes CoF (f , s) and CoF (f ′, s ′) are equivalent iff they
compute the same streams, that is,

∀n ∈ N.Nth(CoF (f , s))(n) = Nth(CoF (f ′, s ′))(n)

10 / 47

Synchronous Stream Processes

A stream function should be a value from:

CoStream(T ,S)→ CoStream(T ′,S ′)

We consider a particular class of stream functions that we call synchronous
stream functions or simply length preserving functions.

A synchronous stream function, from inputs of type T to outputs of type
T ′ is a pair, made of a step function and an initial state.

type SFun(T ,T ′, S) = CoP(S → T → T ′ × S ,S)

It only needs the current value of its input in order to compute the current
value of its output.

Remark that s : CoStream(T ,S) can be represented by a value of the set
SFun(Unit,T ,S) with Unit the set with a single element ().

11 / 47

Fixpoint
Consider a synchronous stream function f : S → T → T × S . Write
fix (f) : S → T × S for the smallest fix-point of f .

fix (f)(s) = v , s ′ such that:

v , s ′ = f s v

That is, given an initial state s : S , we want fix (f) to be a solution of the
following equation:

X (s) = let v , s ′ = X (s) in f s v

This fix-point can be implemented with a recursion on values, for example
in Haskell:

fix (f) = λs.let rec v , s ′ = f s v in v , s ′

The value v is defined recursively.
12 / 47

Justification of its existence
In order to apply the Kleene theorem that state the existence of a smallest
fix-point, all functions must be total.

Value(T) = ⊥+ Some(T)

⊥ is a short-cut for “Causality Error”.

Define lifting functions.

lift0 (v) = Some(v)
lift1 (f)(⊥) = ⊥
lift1 (f)(Some(v)) = Some(f (v))
lift2 (f)(⊥, y) = ⊥
lift2 (f)(x ,⊥) = ⊥
lift2 (f)(Some(v1), Some(v2)) = Some(f (v1)(v2))

That is, ⊥ is absorbing and all functions applied point-wise are total.
13 / 47

Flat Order

Define ≤T⊆ (Value(T)× Value(T)) such that:

⊥ ≤T x
Some(v) ≤T Some(v)

Shortcut: we write simply ≤.

Pairs:
(v1, v2) ≤ (v ′1, v

′
2) iff (v1 ≤ v ′1) ∧ (v2 ≤ v ′2)

Functions:
f ≤ f ′ iff ∀x .f (x) ≤ f ′(x)

14 / 47

The bottom stream
The bottom element is:

CoF ((λs.(⊥, s)),⊥) : CoStream(Value(T),Value(S))

Call ⊥CoStream(T ,S) or simply ⊥, this bottom stream element.

It corresponds to a stream process that stuck: giving an input state, it
returns the bottom value.

Define ≤CoStream(T ,S) such that (noted ≤):

CoF (f , s) ≤ CoF (f ′, s ′) iff (s ≤ s ′) ∧ (∀s.(f s) ≤ (f ′ s))

Define ≤SFun(T ,T ,S) such that (noted ≤):

CoP(f , s) ≤ CoP(f ′, s ′) iff (s ≤ s ′) ∧ (∀s, x : (f s x) ≤ (f ′ s x))

If f : SFun(Value(T),Value(T),Value(S)) is continuous, fix (f) exists.
15 / 47

Bounded Fixpoint

Yet, we cannot define the fix-point operator in Coq, at least as a function.

A trick. Define the bounded iteration fix (f)(n) as:

fix (f)(0)(s) = ⊥, s
fix (f)(n)(s) = let v , s ′ = fix (f)(n − 1)(s) in f s v

Suppose that f x : CoStream(T , S). Compute ‖T‖ such that:

‖bt‖ = 1
‖α‖ = 1
‖t1 × t2‖ = ‖t1‖+ ‖t2‖

Give only a credit of ‖T‖+ 1 iterations for a fix-point on a value of type T .

16 / 47

The semantics of an expression e is:

[[e]]ρ = CoF (f , s) where f = [[e]]State
ρ and s = [[e]]Init

ρ

We use two auxiliary functions. If e is an expression and ρ an environment
which associates a value to a variable name:
• [[e]]Init

ρ is the initial state of the transition function associated to e;
• [[e]]State

ρ is the step function.
ρ map values to identifiers.

17 / 47

[[prec(e)]]
Init
ρ = (c , [[e]]Init

ρ)
[[prec(e)]]

State
ρ = λ(m, s).m, [[e]]State

ρ (s)

[[f e]]Init
ρ = [[e]]Init

ρ

[[f e]]State
ρ = λs.let v , s = [[e]]State

ρ (s) in f (v), s

[[x]]Init
ρ = ()

[[x]]State
ρ = λs.(ρ(x), s)

[[c]]Init
ρ = ()

[[c]]State
ρ = λs.(c , s)

[[(e1, e2)]]
Init
ρ = ([[e1]]

Init
ρ , [[e2]]

Init
ρ)

[[(e1, e2)]]
State
ρ = λ(s1, s2).let v1, s1 = [[e1]]

State
ρ (s1) in

let v2, s2 = [[e2]]
State
ρ (s2) in

(v1, v2), (s1, s2)

18 / 47

[[run f e]]Init
ρ = ρ(f)I , [[e]]

Init
ρ

[[run f e]]State
ρ = λ(m, s).let v , s = [[e]]State

ρ (s) in
let r ,m′ = ρ(f)S mv in
r , (m′, s)

[[let node f x = e]]Init
ρ = ρ+ [CoP(p, s)/f]

such that s = [[e]]Init
ρ

and p = λs, v .[[e]]State
ρ+[v/x](s)

19 / 47

Fixpoint

[[let rec x = e in e ′]]Init
ρ = [[e]]Init

ρ , [[e ′]]Init
ρ

[[let rec x = e in e ′]]State
ρ = λ(s, s ′).let v , s = fix (λs, v .[[e]]State

ρ+[v/x](s)) in
let v ′, s ′ = [[e ′]]State

ρ+[v/x](s
′) in

v ′, (s, s ′)

Using a recursion on value, it corresponds to:

[[let rec x = e in e ′]]State
ρ = λ(s, s ′).let rec v , ns = [[e]]State

ρ+[v/x](s) in
let v ′, s ′ = [[e ′]]State

ρ+[v/x](s
′) in

v ′, (ns, s ′)

Note that v is recursively defined

20 / 47

Control structure

[[if e then e1 else e2]]
Init
ρ = ([[e]]Init

ρ , [[e1]]
Init
ρ , [[e2]]

Init
ρ)

[[if e then e1 else e2]]
State
ρ = λ(s, s1, s2).let v , s = [[e]]State

ρ (s) in
let v1, s1 = [[e1]]

State
ρ (s1) in

let v2, s2 = [[e2]]
State
ρ (s2) in

(if v then v1 else v2,
(s, s1, s2))

[[present e do e1 else e2]]
Init
ρ = ([[e]]Init

ρ , [[e1]]
Init
ρ , [[e2]]

Init
ρ)

[[present e do e1 else e2]]
State
ρ = λ(s, s1, s2).

let v , s = [[e]]State
ρ (s) in

if v
then let v1, s1 = [[e1]]

State
ρ (s1) in

v1, (s, s1, s2)
else let v2, s2 = [[e2]]

State
ρ (s2) in

v2, (s, s1, s2)

The “if/then/else” always executes its arguments but not the “present”:
21 / 47

Modular Reset
Reset a computation when a boolean condition is true.

[[reset e1 every e2]]
Init
ρ = ([[e1]]

Init
ρ , [[e1]]

Init
ρ , [[e2]]

Init
ρ)

[[reset e1 every e2]]
State
ρ = λ(si , s1, s2).

let v2, s2 = [[e2]]
State
ρ (s2) in

let v1, s1 = [[e1]]
State
ρ (if v2 then si else s1) in

v1, (si , s1, s2)

This definition duplicates the initial state. An alternative is:

[[reset e1 every e2]]
Init
ρ = ([[e1]]

Init
ρ , [[e2]]

Init
ρ)

[[reset e1 every e2]]
State
ρ = λ(s1, s2).

let v2, s2 = [[e2]]
State
ρ (s2) in

let s1 = if v2 then [[e1]]Init
ρ else s1 in

let v1, s1 = [[e1]]
State
ρ (s1) in

v1, (s1, s2)

22 / 47

Fix-point for mutually recursive streams

Consider:

let node sincos(x) = (sin, cos) where
rec sin = int(0.0, cos)
and cos = int(1.0, -. sin)

The fix-point construction used in the kernel language is able to deal with
mutually recursive definitions, encoding them as:

sincos = (int(0.0, snd sincos), int(1.0, -. fst sincos)

23 / 47

Encoding mutually recursive streams
A set of mutually recursive streams:

e ::= let rec x = e and ... and x = e in e

is interpreted as the definition of a single recursive definition such that:
let rec x1 = e1 and ... and xn = en in e means:

let rec x = (e1, (e2, (..., en)))[e
′
1/x1, ..., e

′
n/xn] in

with:
e ′1 = fst(x)
e ′2 = fst(snd(x))
...
e ′n = sndn−1(x)

That is, if the n variables x1, ..., xn are streams whose outputs are of type
CoStream(Ti , Si) with i ∈ [1..n], fix (.) is applied to a function of type
S → T1 × ...× Tn → (T1 × ...× Tn)× S with S = (S1 × (...× Sn)). All
streams progress synchronously.

24 / 47

Where are the bottom values?

25 / 47

Examples

Some equations have the constant bottom stream as minimal fix-point.

let node f(x) = o where rec o = o

Indeed:

fix (λs, v .[[o]]State
ρ+[v/o](s)) = fix (λs, v .(v , s)) = λs, v .(⊥, s)

Or:

let node f(z) = (x, y) where rec x = y and y = x

Indeed:

fix (λs, v .[[(snd(v), fst(v))]]State
ρ+[v/x](s)) = fix (λs, v .(snd(v), fst(v)), s)

= λs.(⊥,⊥), s

26 / 47

Def-use chains
The two previous examples have an instantaneous feedback.

Some functions are “strict”, that is fst(f s ⊥) = ⊥.

Some are not, e.g.:

let node mypre(x) = 1 + (0 fby (x+2)

Its semantics is CoP(f , 0) with:

f = λs, x .(1+ s, x + 2)

Hence fst(f s ⊥) = 1+ s, that is, ⊥ < fst(f s ⊥)

We say that f is strictly increasing.

Build a dependence relation from the call graph. If this graph is cyclic,
reject the fix-point definition.

27 / 47

What is really a dependence? How modular is-it?
The notion of dependence is subtle. All function below are such that if x is
non bottom, outputs z and t are non bottom. Do we want to accept them
and how?

let node good1(x) = (z, t) where
rec z = t and t = 0 fby z

let node good2(x) = (z, t) where
rec (z, t) = (t, 0 fby z)

let node good3(x) = (fst r, snd r) where
rec r = (snd r, 0 fby (fst r))

let node pair(r) = (snd r, 0 fby (fst r))

let node good4(x) = r where
rec r = pair(r)

let node f(y) = x where
rec x = if false then x else 0

28 / 47

The following is a classical example that is “constructively causal” but is
rejected by Lustre and Zelus compilers.

let node mux(c, x, y) = present c then x else y

let node constructive(c, x) = y
where rec

rec x1 = mux(c, x, y2)
and x2 = mux(c, y1, x)
and y1 = f(x1)
and y2 = g(x2)
and y = mux(c, y2, y1)

If we look at the def-use chains of variables, there is a cycle in the
dependence graph:
• x1 depends on c, x and y2;
• x2 depends on c, y1 and x;
• y1 depends on x1; y2 depends on x2;
• y depends on c, y2 and y1.
By transitivity, y2 depends on y2 and y1 depends on y1.

29 / 47

Yet, if c and x are non bottom streams, the fix-point that defines
(x1,x2,y1,y2,y) is a non bottom stream.

It can be proved to be equivalent to:

let node constructive(c, x) = y where
rec y = mux(c, g(f(x)), f(g(x)))

Question: is the semantics enough to prove they are equivalent? How?

30 / 47

The following example also defines a node whose output is non bottom:

let node composition(c1, c2, y) = (x, z, t, r)
where rec

present c1 then
do x = y + 1 and z = t + 1 done

else
do x = 1 and z = 2 done

and
present c2 then

do t = x + 1 and r = z + 2 done
else

do t = 1 and r = 2 done

that can be interpreted as the following program in the language kernel:

let node composition(c1, c2, y) = (x, z, t, r)
where rec
(x, z) = present c1 then (y + 1, t + 1) else (1, 2)

and
(t, r) = present c2 then (x + 1, z + 2) else (1, 2)

31 / 47

Is it causal?

Supposing the c1, c2 and y are not bottom values, taking e.g., true for c1
and c2, starting with x0 = ⊥, z0 = ⊥, t0 = ⊥ and r0 = ⊥, the fixpoint is
the limit of the sequence:

xn = y + 1 ∧ zn = tn−1 + 1 ∧ tn = xn−1 + 1 ∧ rn = zn−1 + 2

and is obtained after 4 iterations.

This program is causal: if inputs are non bottom values, all outputs are non
bottom values and this is the case for all computations of it.

32 / 47

The inpact of static code generation

Nonetheless, if we want to generate statically scheduled sequential code,
the control structure must be duplicated:
(1) test c1 to compute x; (2) test c2 to compute t; (3) test (again) c1 to
compute z; (4) test (again) c2 to compute r

let node composition(c1, c2, y) = (x, z, t, r)
where rec

present c1 then do x = y + 1 done else do x = 1 done
and
present c2 then do t = x + 1 done else do t = 1 done

and
present c1 then do z = t + 1 done else do z = 2 done

and
present c2 then do r = z + 2 done else do r = 2 done

It is possible to overconstraint the causality analysis and control structures
to be atomic (outputs all depend on all inputs).

33 / 47

Removing Recursion

The semantics is executable, lazilly or by computing fix point iteratively.

Some recursive equations can be translated into non recursive definitions.

Consider the stream equation:

let rec nat = 0 fby (nat + 1) in nat

Can we get rid of recursion in this definition? Surely yes. Its stream
process is:

nat = Co(λs.(s, s + 1), 0)

34 / 47

First: let us unfold the semantics

Consider the recursive equation:

rec x = (0 fby x) + 1

Let us try to compute the solution of this equation manually by unfolding
the definition of the semantics.

Let x = CoF (f , s) where f is a transition function of type f : S → X × S
and s : S the initial state.

Write x .step for f and x .init for x : init for s.

35 / 47

The equation that defines nat can be rewritten as
let rec nat = f (nat) in nat with let node f x = (0 fby x) + 1.

The semantics of f is:

f = CoP(fs , s0) = CoP(λs, x .(s + 1, x), 0)

Solving nat = f (nat) amount at finding a stream X such that:

X (s) = let v , s ′ = X (s) in fs s v

The bottom stream, to start with, is:

x0 = CoF (λs.(⊥, s),⊥)

36 / 47

Let us proceed iteratively by unfolding the definition of the semantics. We
have:

x1.step = λs.let v , s ′ = x0.step s in fs s v
= λs.fs s ⊥
= λs.s + 1,⊥

x1.init = 0

x2.step = λs.let v , s ′ = x1.step s in fs s v
= λs.let v = s + 1 in fs s v
= λs.let v = s + 1 in s + 1, v
= λs.s + 1, s + 1

x2.init = 0

x3.step = λs.let v , s ′ = x2.step s in fs s v
= λs.let v = s + 1 in fs s v
= λs.let v = s + 1 in s + 1, v
= λs.s + 1, s + 1

x3.init = 0

We have reached the fix-point CoF (λs.(s + 1, s + 1), 0) in three steps.
37 / 47

Syntactically Guarded Stream Equations

A simple, syntactic, condition under which the semantics of mutually
recursive stream equations does not need any fix point.

Consider a node f : CoStream(T , S)→ CoStream(T , S ′) whose semantics
is CoP(ft , st).

The semantics of an equation y = f (y) is: 2

[[let rec y = f (y) in y]]Init
ρ = st

[[let rec y = f (y) in y]]State
ρ = λs.let rec v , s ′ = ft s v in v , s ′

2We reason upto bisimulation, that is, independently on the actual representation of
the internal state.

38 / 47

Two cases can happen:
• Either ft s is strictly increasing and the evaluation succeeds.
• or there is an instantaneous loop.

39 / 47

When ft s v does not need v to return the value part, the recursive
evaluation of the pair v , s ′ can be split into two non recursive definitions.

This case appears, for example, when every stream recursion appears on
the right of a unit delay pre.

A synchronous compiler takes advantage of this in order to produce non
recursive code like the co-iterative nat expression given above.

40 / 47

For example, consider the equation y = f (v fby x). Its semantics is:

[[let rec x = f (v fby x) in x]]Init
ρ = (v , st)

[[let rec x = f (v fby x) in x]]State
ρ (m, s) = let rec v , s ′ = ft s m in

v , (v , s ′)

The recursion is no more necessary, that is:

[[let rec x = f (v fby x) in x]]State
ρ (m, s) = let v , s ′ = ft s m in v , (v , s ′)

41 / 47

The Semantics for Normalised Equations

Consider a set of mutually recursive equations such that it can be put
under the following form:

let rec x1 = v1 fby nx1
and ...
xn = vn fby nxn
and p1 = e1
and ...
and pk = ek

in e

where
∀i , j .(i < j)⇒ Var(ei) ∩ Var(pj) = ∅

where Var(p) and Var(e) are the set of variable names appearing in p and
e.

42 / 47

Its transition function is:

λ(x1, ..., xn, s1, ..., sk , s).let p1, s1 = [[e1]]
State
ρ (s1) in

let ... in
let pk , sk = [[ek]]

State
ρ (sk) in

let r , s = [[e]]State
ρ (s) in

r , (nx1, ..., nxn, s1, ..., sk , s)

with initial state:
(v1, ..., vn, s1, ..., sk , s)

if [[ei]]Init
ρ = si and [[e]]Init

ρ = s.

When a set of mutually recursive streams can be put in the above form, its
transition function does not need a fix-point.

It can be statically scheduled into a function that can be evaluated eagerly.

Question: Is the semantics adequate to prove correctness of this variant
semantics for fix-points?

43 / 47

Next

The Complete Language
This semantics extends to a richer language: local definitions, activation
conditions, hierarchical automata.

Causality typing
A type system which summarizes the input/output dependences. The one
of Zelus expresses input/output relations [BBC+14].

(1) Ouputs are non bottom, provided inputs are non bottom.

(2) Generate statically scheduled code, a function that works with values of
type T , not Value(T).

44 / 47

Non length preserving functions [CP98]

CLValue(T) = E+ V(T)
CLStream(T ,S) = CoStream(CLValue(T), S)

Add ⊥ as “Clocking error”. When a program is well clocked, it does not
generate a value ⊥.

Higher-order stream functions
Deal with Zelus functions like the following one.

let node pid(int)(derivative)(p, i, d, u) = po +. io +. ddo
where rec po = p *. u
and io = run int (i *. u)
and ddo = run derivative (d *. u)

val pid :
{’a < ’b , ’c}. (’b -> ’c) -> (’a -> ’c) ->

’c * ’b * ’d * ’a -> ’c

45 / 47

To be continued

46 / 47

References I

Albert Benveniste, Timothy Bourke, Benoit Caillaud, Bruno Pagano, and Marc Pouzet.
A Type-based Analysis of Causality Loops in Hybrid Systems Modelers.
In International Conference on Hybrid Systems: Computation and Control (HSCC), Berlin, Germany, April
15–17 2014. ACM.

Paul Caspi and Marc Pouzet.
A Co-iterative Characterization of Synchronous Stream Functions.
In Coalgebraic Methods in Computer Science (CMCS’98), Electronic Notes in Theoretical Computer Science,
March 1998.
Extended version available as a VERIMAG tech. report no. 97–07 at www.di.ens.fr/∼pouzet/bib/bib.html.

Jean-Louis Colaco, Bruno Pagano, and Marc Pouzet.
Scade 6: A Formal Language for Embedded Critical Software Development.
In Eleventh International Symposium on Theoretical Aspect of Software Engineering (TASE), Sophia
Antipolis, France, September 13-15 2017.

Christine Paulin-Mohring.
Circuits as streams in Coq, verification of a sequential multiplier.
Technical report, Laboratoire de l’Informatique du Parallélisme, September 1995.
Available at http://www.ens-lyon.fr:80/LIP/lip/publis/.

Marc Pouzet.
Lucid Synchrone, version 3. Tutorial and reference manual.
Université Paris-Sud, LRI, April 2006.
Distribution available at: https://www.di.ens.fr/~pouzet/lucid-synchrone/.

47 / 47

https://www.di.ens.fr/~pouzet/lucid-synchrone/

