A Coiterative Synchronous Semantics
(work in progress)

Marc Pouzet

Ecole normale supérieure
Paris

Marc.Pouzet@ens.fr

Synchron 2019

1/47

Marc.Pouzet@ens.fr

Objective

Give a direct executable (functional) semantics to a synchronous program.
Without having to compile: before scheduling, normalisation, inlining, etc.
Make proofs based on simple unfolding/computations.

Treat both data-flow and control structures (hierarchical automata).

An old idea of Florence (Maraninchi): execute unfinished programs.

E.g., programs that do have a semantics but are rejected by the compiler
because its checks are overly constraining.

2/47

The two works we used

The (old) work with Paul Caspi, “a Coiterative Characterization of
Synchronous Stream Functions” [CP98].

The paper “Circuits as streams in Coq, verification of a sequential
multiplier” by Christine Paulin [PM95].

3/47

The language kernel
A first-order, Lustre-like kernel.

d = letf=¢e|letnodef x=e|dd

e u= c|x|(e,e)|fe|lrunfe]|pre.e)]|efbye
| £st(e) | snd(e)
|let x=eine|letrecx=eine
| if e then e else e

| present e do e else e | reset e every e

f e is the application of a combinatorial function.

run f e is the application of a node.

pre.(e) is the delay initialised with the constant c.

® e -> e is a shortcut for if pre,, . (false) thene; else e;

4/47

Static Typing

5/47

Typing rules
We consider only first order functions.

n= VYai,..,an.gt| gt

gt o= ti>t|t
t = txt|bt|«
= 0]1

t1 =5 b with k € {0, 1} its sort is the type of a function.

0 means that the function is combinatorial;

1 means that the function is stateful;

(t1 X t2) is the product type;

bt is a base type (e.g., bool, int, float).

Historial note: Kinds were introduced in Lucid Synchrone [Pou06] in
version 2 (2000); they are used in the type system of Scade 6 [CPP17].

6/47

Examples (in Zelus)
E.g., the following functions (written in Zelus) are well typed. !
let node from(x) =

let rec £ = x fby (£ + 1) in £

let incr x = x + 1

On the contrary, the following is rejected.

let from(x) =
let rec £

x fby (f + 1) in f

> let rec f = x fby (f + 1) in f

N T

Type error: this is a stateful discrete expression and
is expected to be combinatorial.

1The second form ask incr to be a combinatorial function, i.e., to have a type of

the form . % .
7/47

Semantics

8/47

We give a semantics to well-typed expressions and definitions only.

To simplify the presentation, we consider the same language but where
every expression /sub-expression is annotated with its kind and type.

9/47

Streams processes

A stream process producing values in the set T is a pair made of a step
function of type S — T X S and an initial state S.

CoStream(T,S) = CoF(S— T x S,5)

Given a process CoF(f,s), Nth(v)(n) returns the n-th element of the
corresponding stream process:

Nth(CoF(f,s))(0) = 1letv,s=fsinv
Nth(CoF (F,s))(n) = 1letv,s="fsin Nth(CoF(f,s))(n—1)

Two stream processes Cof (f,s) and CoF(f’,s’) are equivalent iff they
compute the same streams, that is,

Vn € N.Nth(CoF(f,s))(n) = Nth(CoF(f',s"))(n)

10/ 47

Synchronous Stream Processes

A stream function should be a value from:
CoStream(T,S) — CoStream(T',S")

We consider a particular class of stream functions that we call synchronous
stream functions or simply length preserving functions.

A synchronous stream function, from inputs of type T to outputs of type
T’ is a pair, made of a step function and an initial state.
type SFun(T,T',S) = CoP(S - T — T'xS,S)

It only needs the current value of its input in order to compute the current
value of its output.

Remark that s : CoStream(T, S) can be represented by a value of the set
SFun(Unit, T, S) with Unit the set with a single element ().

11/47

Fixpoint

Consider a synchronous stream function f : S — T — T x S. Write
fix(f): S — T x S for the smallest fix-point of f.

fix (f)(s) = v, s’ such that:

v,s =fsv

That is, given an initial state s : S, we want fix (f) to be a solution of the
following equation:

X(s)=letv,s = X(s)infsv

This fix-point can be implemented with a recursion on values, for example
in Haskell:

fix (f) = As.letrecv,s' = fsvinv,s
The value v is defined recursively.

12 /47

Justification of its existence

In order to apply the Kleene theorem that state the existence of a smallest
fix-point, all functions must be total.

Value(T) = L + Some(T)

L is a short-cut for “Causality Error"”.

Define lifting functions.

lifto(v) = Some(v)

lift; (F)(L = 1

lift; (f)(Some(v)) = Some(f(v))
lift2(F)(L, y) = 1

lifto(F)(x, L) = 1
/iftg(f)(Some(vl) Some(v2)) = Some(f(v1)(v2))

That is, L is absorbing and all functions applied point-wise are total.
13/47

Flat Order

Define <7C (Value(T) x Value(T)) such that:

1 ST X
Some(v) <7 Some(v)

Shortcut: we write simply <.

Pairs:
(v1. v2) < (V3 i (vi < V1) A (v2 < 1h)

Functions:
f < fiff Vx.f(x) < f/(x)

14 / 47

The bottom stream
The bottom element is:

CoF((Xs.(L,s)), L) : CoStream(Value(T), Value(S))

Call L costream(T,s) or simply L, this bottom stream element.

It corresponds to a stream process that stuck: giving an input state, it
returns the bottom value.

Define <costream(T,s) such that (noted <):
CoF(f,s) < CoF(f',s") iff (s < ') A (Vs.(fs) < (f's))
Define <spyun(T,7,5) such that (noted <):
CoP(f,s) < CoP(f',s) iff (s < s') A (Vs,x: (fsx) < (f'sx))

If f: SFun(Value(T), Value(T), Value(S)) is continuous, fix (f) exists.

15 /47

Bounded Fixpoint

Yet, we cannot define the fix-point operator in Coq, at least as a function.
A trick. Define the bounded iteration fix (f)(n) as:

fix(F)(0)(s) = L,s

fix (f)(n)(s) = letv,s’ = fix(f)(n—1)(s)infsv

Suppose that f x : CoStream(T,S). Compute || T such that:

|6t =1
lex] =1
ltn x 6| = ltafl + 2]l

Give only a credit of || T|| + 1 iterations for a fix-point on a value of type T.

16 /47

The semantics of an expression e is:

[el, = CoF(f,s) where f = [e]3%* and s = [e] "

We use two auxiliary functions. If e is an expression and p an environment
which associates a value to a variable name:

* [e] ;' is the initial state of the transition function associated to e;

J [e]]gtate is the step function.

p map values to identifiers.

17 /47

[prec(e)]s"
|Ipre ()]]State
IIf e]]lmt

|If e]]State
IIX]]Imt

[[X]] State

IIC]] Init

[[C]] State

[(er, &)/

II(elv e2)]]$tate

(I[e]llnlt)
A(m.s). m, [e] 3% (s)

|[e]]lmt

As.letv,s = |[e]]5tate()inf(v),s
O

As.(p(x); 5)

O

As.(c,s)

(l[el]]Imt |[62]]Init)

)\(517 52) let V1,81 = I]:el]]State(s) n
let Vo, S = ﬂ:ez]]State()/n
(v1,v2), (51, 52)

18/ 47

[run f e]];)”"t

[run f €] gtate

[let node f x = e]]//)”it

p(F)r, Lel)

A(m,s).letv,s = [[e]]lftate(s) in
letr,m' = p(f)s mvin
r,(m',s)

p+ [CoP(p,s)/f]

such that s = [e] /"t

State

and p = As, v.[[e]]p+[v/X](s)

19/47

Fixpoint

[let rec x = ein] = [e]l, []"

[let rec x = e in 3% =)\(s s').let v,s = fix (As, v. [[e]]/s)f[t‘f/x](s)) in
letv',s' = [é f)f[t\f/x](s')in
v, (s,s)

Using a recursion on value, it corresponds to:
[let rec x = e in €]3% = X(s,s).Jet rec v, ns = [[se]]gft‘f/xl(s) in
— /T Stat /
letv',s" = [e pf[ve/x]()in

v/, (ns,s")

Note that v is recursively defined

20 /47

Control structure

[if e then e; else eg]]l"’t = ([[e]]l'"t |[€1]]I"'t |[6‘2]]/mt)

[if e then e else eg]]sme = A, 51,52) letv,s = [[e]]State() in
let vi,s1 = |[e1]]5tate(sl) in
let vo, 55 = [[6‘2]]State(52)
(if v then v; else vy,
(s,s1,%))

[present e do e else] = ([e]™, [e1] ", [e2])
[present e do e else eg]]St"te =)\(s s1,52).
letv,s = [[e]]gtate(s) in
if v
thenlet vi,s1 = [[el]]g“”e(sl) in
vi, (s, 51, %)
else let vo, 55 = |[e2]]5tate(52) in
v2, (s, 51, 92)

The “if/then/else” always executes its arguments but not the “present’
21/47

Modular Reset

Reset a computation when a boolean condition is true.

[[reset e, every e2]llmt — (lIel]]lmt ﬂel]]lmt |Iez]]lmt)

[reset e; every eg]]State = A(si, s1,).
let vp, s = [[ez]]s“”te(52) in
let vi,s1 = [[el]]sme(/f vo then s; else s1) in
vi, (si, 51, 52)

This definition duplicates the initial state. An alternative is:

IIreset e1 every e2]]Imt (I[el]]lmt I[e2]]lmt)

[reset e every e2]]5t3te =)\(51,).
let v, 5, = [e2]37%%(s2) in
let s1 = if vy then [e1] " else sy in
let vi,s1 = [el]]State(sl) n
Vl,(Sl,Sz)

22 /47

Fix-point for mutually recursive streams

Consider:
let node sincos(x) = (sin, cos) where
rec sin = int (0.0, cos)
and cos = int(1.0, -. sin)

The fix-point construction used in the kernel language is able to deal with
mutually recursive definitions, encoding them as:

sincos = (int(0.0, snd sincos), int(1.0, -. fst sincos)

23 /47

Encoding mutually recursive streams
A set of mutually recursive streams:

e = letrecx—eand..andx—==¢eine

is interpreted as the definition of a single recursive definition such that:
let rec x; = €1 and ... and x, = €, in € means:

let rec x = (e1, (€2, (-, €n)))[€1 /X1, ..y €5/ Xn] IN

with:
e] = fst(x)
e, = fst(snd(x))
e/ = snd""1(x)

That is, if the n variables xq, ..., x, are streams whose outputs are of type
CoStream(T;, S;) with i € [1..n], fix (.) is applied to a function of type
S—>TiX..xTp—=(Tyx...xT,)xSwithS=(5 x (... x5,)). All

streams progress synchronously.
24 /47

Where are the bottom values?

25 /47

Examples

Some equations have the constant bottom stream as minimal fix-point.
let node f(x) = o where rec o = o

Indeed:
fix (As, v.[o if[tf/o](s)) = fix (As,v.(v,s)) = As,v.(L,s)
Or:

let node f(z) = (x, y) where rec x = y and y = x

Indeed:

fix (s, v.[(snd(v), £st(v)) gf[t‘f/x](s)) = fix(As, v.(snd(v), £st(v)),s)
As.(L,1),s

26 / 47

Def-use chains

The two previous examples have an instantaneous feedback.
Some functions are “strict”, that is fst(fs L) = L.

Some are not, e.g.:
let node mypre(x) = 1 + (0 fby (x+2)

Its semantics is CoP(f,0) with:

f=MXs,x.(1+s,x+2)

Hence fst(fs L) =1+s, thatis, L < fst(fs_L)
We say that f is strictly increasing.

Build a dependence relation from the call graph. If this graph is cyclic,
reject the fix-point definition.

27 /47

What is really a dependence? How modular is-it?

The notion of dependence is subtle. All function below are such that if x is

non bottom, outputs z and t are non bottom. Do we want to accept them
and how?

let node goodl(x)
rec z =t and t

(z, t) where
0 fby z

let node good2(x) = (z, t) where
rec (z, t) = (t, 0 fby z)

let node good3(x) = (fst r, snd r) where
rec r = (snd r, 0 fby (fst r))

let node pair(r) = (snd r, 0 fby (fst r))

let node good4(x) = r where
rec r = pair(r)

let node f(y) = x where
rec x = if false then x else O
28 /47

The following is a classical example that is “constructively causal’ but is

rejected by Lustre and Zelus compilers.

let node mux(c, x, y) = present ¢ then x else y

let node constructive(c, x) =y
where rec

rec x1 = mux(c, x, y2)
and x2 = mux(c, yl, x)
and y1 = f(x1)
and y2 = g(x2)

and y = mux(c, y2, yl)

If we look at the def-use chains of variables, there is a cycle in the
dependence graph:

® x1 depends on c, x and y2;

x2 depends on ¢, y1 and x;

y1 depends on x1; y2 depends on x2;

y depends on ¢, y2 and y1.
By transitivity, y2 depends on y2 and y1 depends on yi1.

29 /47

Yet, if ¢ and x are non bottom streams, the fix-point that defines
(x1,x2,y1,y2,y) is a non bottom stream.

It can be proved to be equivalent to:

let node constructive(c, x) = y where
rec y = mux(c, g(f(x)), £(g(x)))

Question: is the semantics enough to prove they are equivalent? How?

30/ 47

The following example also defines a node whose output is non bottom:

let node composition(cl, c2, y) = (x, z, t, r)
where rec
present cl then
dox=y+1and z =1t + 1 done
else
do x =1 and z = 2 done
and
present c2 then
dot =x+1and r =z + 2 done
else
dot =1 and r = 2 done

that can be interpreted as the following program in the language kernel:

let node composition(cl, c2, y) = (x, z, t, r)
where rec
(x, 2)
and
(t, r) = present c2 then (x + 1, z + 2) else (1, 2)

present cl then (y + 1, t + 1) else (1, 2)

31/47

Is it causal?

Supposing the c1, c2 and y are not bottom values, taking e.g., true for c1
and c2, starting with xo = 1, zp = L, to = L and rp = L, the fixpoint is
the limit of the sequence:

Xn=y+1Nzy=th1+1ANth=Xp—1+1Arm=2z,_1+2
and is obtained after 4 iterations.

This program is causal: if inputs are non bottom values, all outputs are non
bottom values and this is the case for all computations of it.

32/47

The inpact of static code generation

Nonetheless, if we want to generate statically scheduled sequential code,
the control structure must be duplicated:

(1) test c1 to compute x; (2) test c2 to compute t; (3) test (again) c1 to
compute z; (4) test (again) c2 to compute r

let node composition(cl, c2, y) = (x, z, t, r)

where rec
present cl then do x = y + 1 done else do x = 1 done
and
present c2 then do t = x + 1 done else do t = 1 done
and
present cl then do z = t + 1 done else do z = 2 done
and
present c2 then do r = z + 2 done else do r = 2 done

It is possible to overconstraint the causality analysis and control structures
to be atomic (outputs all depend on all inputs).

33/47

Removing Recursion

The semantics is executable, lazilly or by computing fix point iteratively.
Some recursive equations can be translated into non recursive definitions.

Consider the stream equation:
let rec nat = 0 fby (nat + 1) in nat

Can we get rid of recursion in this definition? Surely yes. Its stream
process is:

nat = Co(As.(s,s +1),0)

34 /47

First: let us unfold the semantics

Consider the recursive equation:

rec x = (0 fby x) + 1

Let us try to compute the solution of this equation manually by unfolding
the definition of the semantics.

Let x = CoF(f,s) where f is a transition function of type f : S — X x §
and s : S the initial state.

Write x.step for f and x.init for x : init for s.

35 /47

The equation that defines nat can be rewritten as
let rec nat = f(nat) in nat with let node f x = (0 by x) + 1.

The semantics of f is:

f = CoP(fs,s0) = CoP(As,x.(s + 1, x),0)

Solving nat = f(nat) amount at finding a stream X such that:

X(s)=letv,s' = X(s)infssv

The bottom stream, to start with, is:

x% = CoF(Xs.(L,s), 1)

36 /47

Let us proceed iteratively by unfolding the definition of the semantics. We
have:

xtstep = MAsletv,s’ =xC.stepsinfysv
= As.fss L
= Ass+1,1

xLinit = 0

x2.step = MAs.letv,s' =xl.stepsinf;sv

= Xs.letv=s+1linfssv
= Asdetv=s+1lins+1,v

= Ass+1,s+1
x2.init = 0
x3.step = MAs.letv,s' =x>stepsinfysv

= Xs.letv=s+1linfssv
= Asdetv=s+1lins+1,v
= Asss+1,s+1
x>.init = 0
We have reached the fix-point CoF(As.(s 4+ 1,s + 1),0) in three steps.

37 /47

3

Syntactically Guarded Stream Equations

A simple, syntactic, condition under which the semantics of mutually
recursive stream equations does not need any fix point.

Consider a node f : CoStream(T,S) — CoStream(T,S’) whose semantics
is CoP(ft,st).

The semantics of an equation y = f(y) is: 2

[let recy = f(y) iny]l* = s

[Let rec y = f(y) in y]]gtate = MAs.letrecv,s' =fisvinv,s

2We reason upto bisimulation, that is, independently on the actual representation of
the internal state.

38 /47

Two cases can happen:
e Either f; s is strictly increasing and the evaluation succeeds.

® or there is an instantaneous loop.

39 /47

When f; s v does not need v to return the value part, the recursive
evaluation of the pair v, s’ can be split into two non recursive definitions.

This case appears, for example, when every stream recursion appears on
the right of a unit delay pre.

A synchronous compiler takes advantage of this in order to produce non
recursive code like the co-iterative nat expression given above.

40/ 47

For example, consider the equation y = f(v fby x). Its semantics is:

[let rec x = f(v £by x) in x] /" = (v,st)
[let rec x = f(v £by x) in x]]f)t‘”e(m,s) = letrecv,s' = fy s min
v, (v,s')

The recursion is no more necessary, that is:

[let rec x = f(v £by x) in x]]gtate(m, s) = letv,s =fisminv,(v,s)

41 /47

The Semantics for Normalised Equations

Consider a set of mutually recursive equations such that it can be put
under the following form:

let rec x3 = vi fby nxg

and ...

Xp = Vp £by nx,
and p; = €1
and ...

and px = ek

ine
where
Vi,j.(i <j)= Var(ej) N Var(p;) =0
where Var(p) and Var(e) are the set of variable names appearing in p and

e.

42 /47

Its transition function is:

)\(Xl7 cees Xny S1y -++5 Sk s)./et p1,51 = [[el]]gtate(sl) in
let ...in
let prc, sk = [ex] 3™ (sx) in
letr,s = [[e]]gtate(s) in

ry(NX1, ..., NXp, S1, vy Sky S)

with initial state:

(Vla -oes Vny S15 +4e5 Sk, S)
: Init _ Init __
if [e]," = si and [e] " = s.
When a set of mutually recursive streams can be put in the above form, its
transition function does not need a fix-point.
It can be statically scheduled into a function that can be evaluated eagerly.

Question: Is the semantics adequate to prove correctness of this variant
semantics for fix-points?

43 /47

Next

The Complete Language

This semantics extends to a richer language: local definitions, activation
conditions, hierarchical automata.

Causality typing

A type system which summarizes the input/output dependences. The one
of Zelus expresses input/output relations [BBCt14].

(1) Ouputs are non bottom, provided inputs are non bottom.

(2) Generate statically scheduled code, a function that works with values of
type T, not Value(T).

44 /47

Non length preserving functions [CP98]

CLValue(T) = E4+V(T)
CLStream(T,S) = CoStream(CLValue(T),S)

Add L as “Clocking error”. When a program is well clocked, it does not
generate a value L.

Higher-order stream functions
Deal with Zelus functions like the following one.

let node pid(int) (derivative) (p, i, d, u) = po +. io +. ddo
where rec po = p *. u
and io = run int (i *. uw)
and ddo = run derivative (d *. u)

val pid :

{?a <’ , ’c}. b -> ’c) -> (’a -> ’¢c) ->
,C * 7'b * 7d * 7a ->)C

45 / 47

To be continued

46 / 47

References |

[
K]

Albert Benveniste, Timothy Bourke, Benoit Caillaud, Bruno Pagano, and Marc Pouzet.

A Type-based Analysis of Causality Loops in Hybrid Systems Modelers.

In International Conference on Hybrid Systems: Computation and Control (HSCC), Berlin, Germany, April
15-17 2014. ACM.

Paul Caspi and Marc Pouzet.

A Co-iterative Characterization of Synchronous Stream Functions.

In Coalgebraic Methods in Computer Science (CMCS’98), Electronic Notes in Theoretical Computer Science,
March 1998.

Extended version available as a VERIMAG tech. report no. 97—07 at www.di.ens.fr/~pouzet/bib/bib.html.

Jean-Louis Colaco, Bruno Pagano, and Marc Pouzet.

Scade 6: A Formal Language for Embedded Critical Software Development.
In Eleventh International Symposium on Theoretical Aspect of Software Engineering (TASE), Sophia
Antipolis, France, September 13-15 2017.

Christine Paulin-Mohring.

Circuits as streams in Coq, verification of a sequential multiplier.
Technical report, Laboratoire de I'Informatique du Parallélisme, September 1995.
Available at http://www.ens-1lyon.fr:80/LIP/1lip/publis/.

Marc Pouzet.

Lucid Synchrone, version 3. Tutorial and reference manual.
Université Paris-Sud, LRI, April 2006.
Distribution available at: https://www.di.ens.fr/ pouzet/lucid-synchrone/.

47 /47

https://www.di.ens.fr/~pouzet/lucid-synchrone/

