An OpenCL code generator for Lustre

|
1-synchronous clocks and underspecification

Guillaume looss, Dumitru Potop, Marc Pouzet
ENS - PARKAS

November 28, 2019

1/23

Part 1 - OpenCL CG
®0

Part 1 - Introduction

@ Performance helps to respect timing requirements
e Ex: synchronous applications using many FFT /convolutions

= Possible solution: offloading code to an accelerator.

o We focus on the code generation.

2/23

Part 1 - OpenCL CG
®0

Part 1 - Introduction

@ Performance helps to respect timing requirements
e Ex: synchronous applications using many FFT /convolutions

= Possible solution: offloading code to an accelerator.

o We focus on the code generation.

@ Goal: Show that offloading computation using OpenCL can
be done:
o With few modifications to Lustre code generator
e With a small Lustre language extension
e To generate efficient code

2/23

Part 1 - OpenCL CG
®0

Part 1 - Introduction

@ Performance helps to respect timing requirements
e Ex: synchronous applications using many FFT /convolutions

= Possible solution: offloading code to an accelerator.
o We focus on the code generation.

@ Goal: Show that offloading computation using OpenCL can
be done:

o With few modifications to Lustre code generator
e With a small Lustre language extension
e To generate efficient code

@ Structure of this part of the presentation:

© Generating sequential offloaded code
@ Parallel offloaded code

2/23

Part 1 - OpenCL CG
oce

Basic OpenCL notions

@ Host: call the OpenCL API
@ Device: run the OpenCL kernels (accelerator)
o We assume 1 Host and 1 Device
e For OpenCL: no communication directly from a device to
another
o Kernel: Computation to be executed on a Device
o Buffer: Memory object, channel between Host and Device

e Command queue: enqueue commands to be run on a Device

e Several command queue can be associated to 1 Device
o Similar to threads
e In our case: impose in-order execution

3/23

Part 1 - OpenCL CG
®00000

A quick reminder on classical Lustre code generation

@ For each Lustre node, generate:

e Step function: computation for a tick
o Reset function: initialize/reset the internal memory

4/23

Part 1 - OpenCL CG
®00000

A quick reminder on classical Lustre code generation

@ For each Lustre node, generate:

e Step function: computation for a tick
o Reset function: initialize/reset the internal memory

@ Running it: main infinite while loop

1 iteration = 1 tick of the global clock
Acquire the inputs

Calls the top Lustre node

Return the outputs

4/23

Part 1 - OpenCL CG
0®0000

Structure of the generated code

@ In order to offload a function, we need to:

© Build the OpenCL objects (before the while loop)
@ Use the OpenCL objects to execute a kernel (step function)

o No reset function needed (no data kept on device)

5/23

Part 1 - OpenCL CG
0®0000

Structure of the generated code

@ In order to offload a function, we need to:
© Build the OpenCL objects (before the while loop)
@ Use the OpenCL objects to execute a kernel (step function)

o No reset function needed (no data kept on device)

@ Main function: Initialize objects (command queue, buffer,
kernel)

o Need to be communicated to the step function
= Use a global data structure to transmit them.

5/23

Part 1 - OpenCL CG
00®000

Structure of the main function

In the main function, OpenCL prelude (before the while loop):
© Obtain the information about the architecture

o Create the command queue associated to the device
e This part of the code is fixed

@ Load and build the kernels

o One kernel per instance of an offloaded function
o Name of the ".cl" file and name of the kernel needed
o Dimension of the kernel needed (dim of thread id)

© Create the buffers (one per input/output of every kernels)
o Size of the data needed here
© Associate the buffers to their kernel

e Local memory initialization done here

© Save data inside the global data structure

6/23

Part 1 - OpenCL CG
00000

Structure of the step function

When we generate the code for an offloaded function call:
@ Write the inputs in their buffers

@ Enqueue the computation of the kernel

o Need the total number of threads to be used
o Need the number of threads per workgroup

© Wait for the completion of the computation
@ Retrieve the outputs in their buffers

Remark: Sequential (Host wait for the kernel on the Device)

7/23

Part 1 - OpenCL CG
0000e0

Language extension

Information needed by the Code Generator:
o Buffer-related:

o Type of the data transmitted (for the size)
o Global (i.e., visible input or output) or local memory

@ Kernel-related: file where its code is, name and dimension.

o Computation-related:

o Total number of threads used by an instance of a kernel
o Number of threads per workgroup

8/23

Part 1 - OpenCL CG
0000e0

Language extension

Information needed by the Code Generator:
o Buffer-related:

o Type of the data transmitted (for the size)
o Global (i.e., visible input or output) or local memory

@ Kernel-related: file where its code is, name and dimension.

o Computation-related:

o Total number of threads used by an instance of a kernel
o Number of threads per workgroup

Position of these infos in the language extension:
o Buffer/kernel-related — signature of an OpenCL function

@ Computation-related — at the level of the equation

8/23

Part 1 - OpenCL CG
oooo0e

Language extension - example

Example of program using the OpenCL extension:
(* Offloaded computation *)
__clkernel node vector_add(a : int"1024; b : int"1024) returns (c : int~1024)
__clsource "sum_vector.cl"
__cldim 1;

(* Main node *)
node main(il : int"1024, i2 : int"1024) returns (o : int~1024)
let
o = __ clglobal_worksize 1024 ___ cllocal_worksize 32
vector_add(il, i2) ;
tel

9/23

Part 1 - OpenCL CG
®0000

OpenCL parallel code generation for Lustre

e What do we want?

e Several threads
e Several command queues (associated to same Device)
e Shared memory between all threads, statically allocated

10/23

Part 1 - OpenCL CG
®0000

OpenCL parallel code generation for Lustre

e What do we want?

e Several threads
e Several command queues (associated to same Device)
e Shared memory between all threads, statically allocated

o Parallel schedule: provided by external tool

o Get a table of scheduling (of equations of main node)
o Start/end dates are only used as ordering (no deadlock)

10/23

Part 1 - OpenCL CG
0®000

(Running) example of scheduling table

Host 1 Host 2 Dev 1 Dev 2

f1
f3 2
kerl
f4
ker2
5 6
f7

11/23

Part 1 - OpenCL CG
00®00

Offloading management as a preprocessing

Host 1 Host 2

@ OpenCL is thread-safe:
o Offloading can be done from fl
any thread
@ No direct communication f3 | f2
between 2 kernels
kl-beg
e In graph of dependence, add a
task (just a c kl-end
(ju opy) obeg|
@ Two parts:
e Launch from thread where the 2-and
oldest input was produced f5 f6
e Recover on first thread
finishing a task after
completion f7

12/23

Part 1 - OpenCL CG
0000

Synchronization placement as a preprocessing

@ Data is associated with the thread producing it.

= Synchronization if consumer is on a different thread.

13/23

Part 1 - OpenCL CG
0000

Synchronization placement as a preprocessing

@ Data is associated with the thread producing it.

= Synchronization if consumer is on a different thread.

e Memory organization: (shared memory)

e All memory is allocated from the start
o Data structure containing addresses (args to all threads)

13/23

Part 1 - OpenCL CG
0000

Synchronization placement as a preprocessing

@ Data is associated with the thread producing it.

= Synchronization if consumer is on a different thread.

e Memory organization: (shared memory)

e All memory is allocated from the start
o Data structure containing addresses (args to all threads)

e Memory transfer/synchronization placement:

signal

*wait(2)

signal

13/23

Part 1 - OpenCL CG
0oooe

Structure of the generated code

@ Main function: prelude for thread/synch init

@ One kernel function per column of the scheduling table
e For one core, no thread creation (code is in the while loop)
Step function generation: follow the scheduling table (slice)

e Normal function call
e Synchronization (transmission or reception)
o Offloading (enqueue or completion)

Global barrier in while loop to synchronize all threads together

14/23

Part 1 - OpenCL CG
°0

Part 1 - Conclusion

@ Sequential, then parallel OpenCL code generator for Lustre

@ Potential improvements:

e Many options are disabled by default in our code generator
e Architecture is fixed. Extending to several devices should be
simple

15/23

Part 1 - OpenCL CG
°0

Part 1 - Conclusion

@ Sequential, then parallel OpenCL code generator for Lustre

@ Potential improvements:

e Many options are disabled by default in our code generator
e Architecture is fixed. Extending to several devices should be
simple

@ Implementation: extension to Heptagon

e Sequential case done
e Parallel case in progress

15/23

Part 1 - OpenCL CG
°0

Part 1 - Conclusion

@ Sequential, then parallel OpenCL code generator for Lustre

@ Potential improvements:

e Many options are disabled by default in our code generator
e Architecture is fixed. Extending to several devices should be
simple

@ Implementation: extension to Heptagon

e Sequential case done
e Parallel case in progress

@ My experience:

e Using OpenCL = filling "administrative forms"
e Goes surprisingly well with Lustre code generation scheme

15/23

Part 1 - OpenCL CG
oce

Part 1 finished

Now would be a good time for questions. ..

16/23

Part 1 - OpenCL CG
oce

Part 1 finished

Now would be a good time for questions. ..

...... And now, for a (almost) completely different topic!

16/23

Part 2 - 1-synchronous clocks
900000

Part 2 - Previously - 1-synchronous clock

@ Consider integration program:
Top-level node, orchestrating all tasks of an application

o Multiple harmonic periods (ex: 5ms /10 ms /20 ms / ...)
e Tasks are present only once per period

o 1-synchronous clocks: "(0K10"=k=1)" (or "0%(10"~1)")
with 0 < k < n, n = period and k = phase

17/23

Part 2 - 1-synchronous clocks
900000

Part 2 - Previously - 1-synchronous clock

@ Consider integration program:
Top-level node, orchestrating all tasks of an application
o Multiple harmonic periods (ex: 5ms /10 ms /20 ms / ...)
e Tasks are present only once per period

o 1-synchronous clocks: "(0K10"=k=1)" (or "0%(10"~1)")
with 0 < k < n, n = period and k = phase

o Last year presentation:
Three successive extension to the Lustre language:
1) Nodes restricted to 1-synchronous clocks

o Operators: delay(k), specialized when, specialized current
o Clocking rules
@ Issue: hard to write

17/23

Part 2 - 1-synchronous clocks
0®0000

Previously - unspecified phase

2) Unspecified phase for 1-synchronous clocks

o Phases are linear expression of clock variable
e Buffer operator + various constraints on phases

a:int: [.4];
b:int: [,2]; COnstra-int . 5 pb o
. Extraction
a = buffer (b when [1,2]);
Solving
a:int: [2,4]; _
b :int:: [0,2]; za _ 2
S Substitution b
a = b when [1,2];

(Note: Implementation available as a Heptagon branch)

18/23

Part 2 - 1-synchronous clocks
00@000

Previously - underspecified computation

3) Underspecified computation:
o Which instance of a value is taken? ~» unspecified by user
o Compiler decides which value to take
How to use this to relax constraints on phases?
(latency constraints might prevent too much relaxation)

19/23

Part 2 - 1-synchronous clocks
00@000

Previously - underspecified computation

3) Underspecified computation:
o Which instance of a value is taken? ~» unspecified by user
o Compiler decides which value to take
How to use this to relax constraints on phases?
(latency constraints might prevent too much relaxation)

o Operator: i fby?” expr.
o Value: i fby? expr (with 0 < d < n)
o Determinization: find a value of d for every fby? operator.
o (Remy Wyss [Asplas12]: "don't care" (dc) operator)

19/23

Part 2 - 1-synchronous clocks
[e]eleY Yolo)

Multi-periodic underspecified operators

@ when? and current? operator:
o Sampled value is underspecified (only the ratio is provided)
e Can be obtained from fby? with syntactic sugar.
o Determinization: which value is [sub/over]sampled?

-|—9—|—o—|—<. >—| I

fby? fby?
y = x when? 3; y = current?(3, i, x);

= What are their corresponding clocking rule?

20/23

Part 2 - 1-synchronous clocks
0000@0

Clocking rule for the when? and current?

@ fby?: Same clocking rule than fby

@ when?: expr must be after the selected (d-th) instance

0<d<r
HE-x:[p,m] mr=n p+dm<gq

H F x when? r :: [q, n]

21/23

Part 2 - 1-synchronous clocks
0000@0

Clocking rule for the when? and current?

@ fby?: Same clocking rule than fby

@ when?: expr must be after the selected (d-th) instance

0<d<r
HE-x:[p,m] mr=n p+dm<gq

H F x when? r :: [q, n]

@ current?: expr must be after the selected (d-th) update

0<d<r
HtFi:[p,n] HFEx:[p,n] mr=n p—dn<g

HF current?(r, i, x) :: [q, m]

21/23

Part 2 - 1-synchronous clocks
00000e

Adding constraint for causality analysis

o Easy solution: consider £by? as a potential copy
Example of rejected program:

a = 0 fby? b;
b = 0 fby? a;

22/23

Part 2 - 1-synchronous clocks
00000e

Adding constraint for causality analysis

o Easy solution: consider £by? as a potential copy
Example of rejected program:

a = 0 fby? b;
b = 0 fby? a;

o Better solution:

o Remy Wyss [Asplas12]: Monoperiodic case (bool constraints)
e In our case: encode it with linear constraints (using d)

Find the cycles of dependence with no fby

Log the fby?

Constraint form: 1 < dy +do + ...

Example: 1 < di + d>.

22/23

Part 2 - 1-synchronous clocks
[1}

Part 2 - Conclusion

@ Underspecified computation for 1-synchronous computation

e How to take advantage of them for phase inference?
e Causality analysis with these operators

23/23

Part 2 - 1-synchronous clocks
[1}

Part 2 - Conclusion

@ Underspecified computation for 1-synchronous computation

e How to take advantage of them for phase inference?
e Causality analysis with these operators

@ Do you have any other questions?

23/23

Part 2 - 1-synchronous clocks
oce

Bonus slide - offloading management as a preprocessing

Host 0 Host 1 Host 2

f1
@ Example of why we need to add f3 f2
a task on a communication kl-beg
between 2 Devices
endl b | fa
@ Comms between 2 Devices must k2-beg
go through a Host Koeend
= Need a dedicated thread.
5 6
f7

24/23

	Part 1 - OpenCL CG
	Sequential offloading
	Parallel offloading
	Conclusion

	Part 2 - 1-synchronous clocks
	Conclusion

