
1/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

An OpenCL code generator for Lustre
+

1-synchronous clocks and underspecification

Guillaume Iooss, Dumitru Potop, Marc Pouzet

ENS - PARKAS

November 28, 2019

2/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Part 1 - Introduction

Performance helps to respect timing requirements
Ex: synchronous applications using many FFT/convolutions

⇒ Possible solution: offloading code to an accelerator.

We focus on the code generation.

Goal: Show that offloading computation using OpenCL can
be done:

With few modifications to Lustre code generator
With a small Lustre language extension
To generate efficient code

Structure of this part of the presentation:
1 Generating sequential offloaded code
2 Parallel offloaded code

2/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Part 1 - Introduction

Performance helps to respect timing requirements
Ex: synchronous applications using many FFT/convolutions

⇒ Possible solution: offloading code to an accelerator.

We focus on the code generation.

Goal: Show that offloading computation using OpenCL can
be done:

With few modifications to Lustre code generator
With a small Lustre language extension
To generate efficient code

Structure of this part of the presentation:
1 Generating sequential offloaded code
2 Parallel offloaded code

2/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Part 1 - Introduction

Performance helps to respect timing requirements
Ex: synchronous applications using many FFT/convolutions

⇒ Possible solution: offloading code to an accelerator.

We focus on the code generation.

Goal: Show that offloading computation using OpenCL can
be done:

With few modifications to Lustre code generator
With a small Lustre language extension
To generate efficient code

Structure of this part of the presentation:
1 Generating sequential offloaded code
2 Parallel offloaded code

3/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Basic OpenCL notions

Host: call the OpenCL API
Device: run the OpenCL kernels (accelerator)

We assume 1 Host and 1 Device
For OpenCL: no communication directly from a device to
another

Kernel: Computation to be executed on a Device
Buffer: Memory object, channel between Host and Device

Command queue: enqueue commands to be run on a Device
Several command queue can be associated to 1 Device
Similar to threads
In our case: impose in-order execution

4/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

A quick reminder on classical Lustre code generation

For each Lustre node, generate:
Step function: computation for a tick
Reset function: initialize/reset the internal memory

Running it: main infinite while loop
1 iteration = 1 tick of the global clock
Acquire the inputs
Calls the top Lustre node
Return the outputs

4/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

A quick reminder on classical Lustre code generation

For each Lustre node, generate:
Step function: computation for a tick
Reset function: initialize/reset the internal memory

Running it: main infinite while loop
1 iteration = 1 tick of the global clock
Acquire the inputs
Calls the top Lustre node
Return the outputs

5/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Structure of the generated code

In order to offload a function, we need to:
1 Build the OpenCL objects (before the while loop)
2 Use the OpenCL objects to execute a kernel (step function)

No reset function needed (no data kept on device)

Main function: Initialize objects (command queue, buffer,
kernel)

Need to be communicated to the step function
⇒ Use a global data structure to transmit them.

5/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Structure of the generated code

In order to offload a function, we need to:
1 Build the OpenCL objects (before the while loop)
2 Use the OpenCL objects to execute a kernel (step function)

No reset function needed (no data kept on device)

Main function: Initialize objects (command queue, buffer,
kernel)

Need to be communicated to the step function
⇒ Use a global data structure to transmit them.

6/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Structure of the main function

In the main function, OpenCL prelude (before the while loop):
1 Obtain the information about the architecture

Create the command queue associated to the device
This part of the code is fixed

2 Load and build the kernels
One kernel per instance of an offloaded function
Name of the ".cl" file and name of the kernel needed
Dimension of the kernel needed (dim of thread id)

3 Create the buffers (one per input/output of every kernels)
Size of the data needed here

4 Associate the buffers to their kernel
Local memory initialization done here

5 Save data inside the global data structure

7/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Structure of the step function

When we generate the code for an offloaded function call:
1 Write the inputs in their buffers
2 Enqueue the computation of the kernel

Need the total number of threads to be used
Need the number of threads per workgroup

3 Wait for the completion of the computation
4 Retrieve the outputs in their buffers

Remark: Sequential (Host wait for the kernel on the Device)

8/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Language extension

Information needed by the Code Generator:
Buffer-related:

Type of the data transmitted (for the size)
Global (i.e., visible input or output) or local memory

Kernel-related: file where its code is, name and dimension.
Computation-related:

Total number of threads used by an instance of a kernel
Number of threads per workgroup

Position of these infos in the language extension:
Buffer/kernel-related → signature of an OpenCL function
Computation-related → at the level of the equation

8/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Language extension

Information needed by the Code Generator:
Buffer-related:

Type of the data transmitted (for the size)
Global (i.e., visible input or output) or local memory

Kernel-related: file where its code is, name and dimension.
Computation-related:

Total number of threads used by an instance of a kernel
Number of threads per workgroup

Position of these infos in the language extension:
Buffer/kernel-related → signature of an OpenCL function
Computation-related → at the level of the equation

9/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Language extension - example

Example of program using the OpenCL extension:
(* Offloaded computation *)
__clkernel node vector_add(a : int^1024; b : int^1024) returns (c : int^1024)

__clsource "sum_vector.cl"
__cldim 1;

(* Main node *)
node main(i1 : int^1024, i2 : int^1024) returns (o : int^1024)
let

o = __clglobal_worksize 1024 __cllocal_worksize 32
vector_add(i1, i2) ;

tel

10/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

OpenCL parallel code generation for Lustre

What do we want?
Several threads
Several command queues (associated to same Device)
Shared memory between all threads, statically allocated

Parallel schedule: provided by external tool
Get a table of scheduling (of equations of main node)
Start/end dates are only used as ordering (no deadlock)

10/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

OpenCL parallel code generation for Lustre

What do we want?
Several threads
Several command queues (associated to same Device)
Shared memory between all threads, statically allocated

Parallel schedule: provided by external tool
Get a table of scheduling (of equations of main node)
Start/end dates are only used as ordering (no deadlock)

11/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

(Running) example of scheduling table

f1

f2f3

ker1

ker2
f4

f5 f6

f7

Host 1 Host 2 Dev 1 Dev 2

12/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Offloading management as a preprocessing

OpenCL is thread-safe:
Offloading can be done from
any thread

No direct communication
between 2 kernels

In graph of dependence, add a
task (just a copy)

Two parts:
Launch from thread where the
oldest input was produced
Recover on first thread
finishing a task after
completion

f1

f2f3

f4

f5 f6

f7

k1-beg

k1-end
k2-beg

k2-end

Host 1 Host 2

13/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Synchronization placement as a preprocessing

Data is associated with the thread producing it.
⇒ Synchronization if consumer is on a different thread.

Memory organization: (shared memory)
All memory is allocated from the start
Data structure containing addresses (args to all threads)

Memory transfer/synchronization placement:

signal

signal

wait(2)

13/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Synchronization placement as a preprocessing

Data is associated with the thread producing it.
⇒ Synchronization if consumer is on a different thread.

Memory organization: (shared memory)
All memory is allocated from the start
Data structure containing addresses (args to all threads)

Memory transfer/synchronization placement:

signal

signal

wait(2)

13/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Synchronization placement as a preprocessing

Data is associated with the thread producing it.
⇒ Synchronization if consumer is on a different thread.

Memory organization: (shared memory)
All memory is allocated from the start
Data structure containing addresses (args to all threads)

Memory transfer/synchronization placement:

signal

signal

wait(2)

14/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Structure of the generated code

Main function: prelude for thread/synch init

One kernel function per column of the scheduling table
For one core, no thread creation (code is in the while loop)

Step function generation: follow the scheduling table (slice)
Normal function call
Synchronization (transmission or reception)
Offloading (enqueue or completion)

Global barrier in while loop to synchronize all threads together

15/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Part 1 - Conclusion

Sequential, then parallel OpenCL code generator for Lustre

Potential improvements:
Many options are disabled by default in our code generator
Architecture is fixed. Extending to several devices should be
simple

Implementation: extension to Heptagon
Sequential case done
Parallel case in progress

My experience:
Using OpenCL = filling "administrative forms"
Goes surprisingly well with Lustre code generation scheme

15/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Part 1 - Conclusion

Sequential, then parallel OpenCL code generator for Lustre

Potential improvements:
Many options are disabled by default in our code generator
Architecture is fixed. Extending to several devices should be
simple

Implementation: extension to Heptagon
Sequential case done
Parallel case in progress

My experience:
Using OpenCL = filling "administrative forms"
Goes surprisingly well with Lustre code generation scheme

15/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Part 1 - Conclusion

Sequential, then parallel OpenCL code generator for Lustre

Potential improvements:
Many options are disabled by default in our code generator
Architecture is fixed. Extending to several devices should be
simple

Implementation: extension to Heptagon
Sequential case done
Parallel case in progress

My experience:
Using OpenCL = filling "administrative forms"
Goes surprisingly well with Lustre code generation scheme

16/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Part 1 finished

Now would be a good time for questions. . .

. And now, for a (almost) completely different topic!

16/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Part 1 finished

Now would be a good time for questions. . .

. And now, for a (almost) completely different topic!

17/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Part 2 - Previously - 1-synchronous clock

Consider integration program:
Top-level node, orchestrating all tasks of an application

Multiple harmonic periods (ex: 5 ms / 10 ms / 20 ms / . . .)
Tasks are present only once per period

1-synchronous clocks: "(0k10n−k−1)" (or "0k(10n−1)")
with 0 ≤ k < n, n = period and k = phase

Last year presentation:
Three successive extension to the Lustre language:
1) Nodes restricted to 1-synchronous clocks

Operators: delay(k), specialized when, specialized current
Clocking rules
Issue: hard to write

17/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Part 2 - Previously - 1-synchronous clock

Consider integration program:
Top-level node, orchestrating all tasks of an application

Multiple harmonic periods (ex: 5 ms / 10 ms / 20 ms / . . .)
Tasks are present only once per period

1-synchronous clocks: "(0k10n−k−1)" (or "0k(10n−1)")
with 0 ≤ k < n, n = period and k = phase

Last year presentation:
Three successive extension to the Lustre language:
1) Nodes restricted to 1-synchronous clocks

Operators: delay(k), specialized when, specialized current
Clocking rules
Issue: hard to write

18/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Previously - unspecified phase

2) Unspecified phase for 1-synchronous clocks
Phases are linear expression of clock variable
Buffer operator + various constraints on phases

a : int :: [..,4];
b : int :: [..,2];
. . .
a = buffer (b when [1,2]);

. . .
pa ≥ pb + 2

. . .

pa = 2
pb = 0
. . .

a : int :: [2,4];
b : int :: [0,2];
. . .
a = b when [1,2];

Constraint
Extraction

Solving

Substitution

(Note: Implementation available as a Heptagon branch)

19/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Previously - underspecified computation

3) Underspecified computation:
Which instance of a value is taken? ; unspecified by user
Compiler decides which value to take

How to use this to relax constraints on phases?
(latency constraints might prevent too much relaxation)

• • •

•
?

Operator: i fby?n expr.
Value: i fbyd expr (with 0 ≤ d ≤ n)
Determinization: find a value of d for every fby? operator.
(Remy Wyss [Asplas12]: "don’t care" (dc) operator)

19/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Previously - underspecified computation

3) Underspecified computation:
Which instance of a value is taken? ; unspecified by user
Compiler decides which value to take

How to use this to relax constraints on phases?
(latency constraints might prevent too much relaxation)

• • •

•
?

Operator: i fby?n expr.
Value: i fbyd expr (with 0 ≤ d ≤ n)
Determinization: find a value of d for every fby? operator.
(Remy Wyss [Asplas12]: "don’t care" (dc) operator)

20/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Multi-periodic underspecified operators

when? and current? operator:
Sampled value is underspecified (only the ratio is provided)
Can be obtained from fby? with syntactic sugar.
Determinization: which value is [sub/over]sampled?

• • •

•
?

fby? fby?

y = x when? 3;

•

• • •
?

fby? fby?
y = current?(3, i, x);

⇒ What are their corresponding clocking rule?

21/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Clocking rule for the when? and current?

fby?: Same clocking rule than fby

when?: expr must be after the selected (d-th) instance

H ` x :: [p,m] m.r = n
0 ≤ d < r

p + d .m ≤ q

H ` x when? r :: [q, n]

current?: expr must be after the selected (d-th) update

H ` i :: [p, n] H ` x :: [p, n] m.r = n
0 ≤ d < r
p − d .n ≤ q

H ` current?(r, i, x) :: [q,m]

21/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Clocking rule for the when? and current?

fby?: Same clocking rule than fby

when?: expr must be after the selected (d-th) instance

H ` x :: [p,m] m.r = n
0 ≤ d < r

p + d .m ≤ q

H ` x when? r :: [q, n]

current?: expr must be after the selected (d-th) update

H ` i :: [p, n] H ` x :: [p, n] m.r = n
0 ≤ d < r
p − d .n ≤ q

H ` current?(r, i, x) :: [q,m]

22/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Adding constraint for causality analysis

Easy solution: consider fby? as a potential copy
Example of rejected program:

a = 0 fby? b;
b = 0 fby? a;

Better solution:
Remy Wyss [Asplas12]: Monoperiodic case (bool constraints)
In our case: encode it with linear constraints (using d)

Find the cycles of dependence with no fby
Log the fby?
Constraint form: 1 ≤ d1 + d2 + . . .
Example: 1 ≤ d1 + d2.

22/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Adding constraint for causality analysis

Easy solution: consider fby? as a potential copy
Example of rejected program:

a = 0 fby? b;
b = 0 fby? a;

Better solution:
Remy Wyss [Asplas12]: Monoperiodic case (bool constraints)
In our case: encode it with linear constraints (using d)

Find the cycles of dependence with no fby
Log the fby?
Constraint form: 1 ≤ d1 + d2 + . . .
Example: 1 ≤ d1 + d2.

23/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Part 2 - Conclusion

Underspecified computation for 1-synchronous computation
How to take advantage of them for phase inference?
Causality analysis with these operators

Do you have any other questions?

23/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Part 2 - Conclusion

Underspecified computation for 1-synchronous computation
How to take advantage of them for phase inference?
Causality analysis with these operators

Do you have any other questions?

24/23

Part 1 - OpenCL CG Part 2 - 1-synchronous clocks

Bonus slide - offloading management as a preprocessing

Example of why we need to add
a task on a communication
between 2 Devices
Comms between 2 Devices must
go through a Host

⇒ Need a dedicated thread.

f1

f2f3

f4f4b

f5 f6

f7

k1-beg

k1-end
k2-beg

k2-end

Host 0 Host 1 Host 2

	Part 1 - OpenCL CG
	Sequential offloading
	Parallel offloading
	Conclusion

	Part 2 - 1-synchronous clocks
	Conclusion

