
7–9 September 2020 | Kiel, Germany

FDL stimulates scientific and controversial discussions in a friendly and productive environment.

New trends and traditional topics in the broad fields of embedded/electronics/software systems
and languages merge in a lively and cross-discipline research & industrial community.

Calls for Special sessions, Full (8 pp), short (4 pp), and WiP/PhD Forum/Poster (2 pp) papers.

Keynotes: Edward Lee / UC Berkeley,
Manuel Serrano / Inria & Université Côte d’Azur,

Hauke Fuhrmann / Scheidt & Bachmann

Forum on specification & Design Languages

(FDL’20)

Deadlines:

Special Sessions: March 22, 2020

Paper Deadline: May 29, 2020

PhD/WiP Deadline: June 12, 2020

Author Notification: June 28, 2020

Final Version: July 19, 2020

Website: www.fdl-conference.org | Contact: fdl2020@easychair.org

Re FDL‘19: Open call for ACM TECS Special Issue on Specification and Design Languages

Deadline: Feb. 1, 2020 (firm)

Contacts: Alain Girault, Reinhard von Hanxleden

Synthesizing Manually
Verifiable Code for SCCharts

SYNCHRON’19

Based on work presented (by C. Motika) at the Workshop on

Reactive and Event-Based Languages and Systems (REBLS ’18)

November 2018, Boston

Steven Smyth1, Christian Motika2, and

Reinhard von Hanxleden1

1) Real-Time and Embedded Systems Group, Kiel University, Kiel, Germany

2) Lufthansa Technik AG, Hamburg

4

Development Assurance Level (DAL)
Level of rigor w.r.t. development assurance tasks

(defined during safety assessment)

Level
Severity

of Failure Tolerable Probability

A Catastrophic
Not during lifetime

of system < 10^-9

B Hazardous
Like A, but may occur

exceptionally < 10^-7

C Major
May occur some time

during lifetime < 10^-5

Minor
May occur

several times < 10^-3

E
ff
o
r
t

2x

4x

8x
Multiple deaths

Serious/fatal injuries

small # of persons

Pain / hurt

Discomfort

Flight Control

Oxygen Mask

Cabin Lighting

Reading LightD

5

Aerospace Software
Statemachines in DAL-B/DAL-C Software

• Statemachines used in

specification, SW requirement

and/or SW design phase

• Code automatically synthesized

Þ Manual verification required

6

Aerospace Software
GOAL: Ease Manual Verification Steps

System Specification

SW Requirements

SW Design

Code &

Implementation

Binary

Executable

… g0 = _GO;

if(g0){ O = 0; }

g2 =(PRE_g1);

_cg2 = A;

g1 =(g0||(g2&&(!(_cg2))));

g3 =(g2&&_cg2);

if(g3){ O = 1; }

g5 =(PRE_g4);

g4 =(g3||g5); …

Verification:

Reviews

Walkthroughs

Inspections

Validation:

Testing

ACTIVITIES

…

Code Gen

Verify

Verification:

Reviews

Walkthroughs

Inspections

Validation:

Testing

ACTIVITIES

Verify

7

Goal: Generate Statecharts Code

that is Manually Verifiable

Outline:

1. SCCharts

2. State-based code generation

3. User Study

Compile

Verify …

Part I

SCCharts Intro

9

Statechart Dialects

Harel

Statecharts: A Visual Formalism for Complex Systems

Science of Computer Programming‚ 1987

Harel Statecharts - “an almost

synchronous language” (‘80)
[Dagstuhl Report 104]

[Wikipedia]

UML State Machines

(‘97) – “… a … variant of

Harel statechart”

SCADE Safe State Machines /

SyncCharts (‘95)

Charles André

SyncCharts: A Visual Representation of Reactive

Behaviors

Research Report 95-52, I3S, Sophia Antipolis,

1995

10

• Successor of SyncCharts

• Sequentially Constructive Model of Computation

• Collaborations:

• In Eclipse: KIELER

• In the browser: KEITH

SCCharts (‘13)

Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael Mendler,

Joaquín Aguado, Stephen Mercer, Owen O’Brien.

SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications.

PLDI’14, Edinburgh, UK, June 2014. ACM.

11

AO SCChart

Interface State

Initial State TransitionTrigger / Effect

Hierarchy, Concurrency, Signals, …

Part II

State Machine
Code Generation (CG)

1 Dataflow

2 Priorities + Macros

3 State machine pattern

14

SCCharts defined/compiled

by M2M Transformations:

Extended SCCharts

⇒

Core SCCharts

⇒

Normalized Core SCCharts

⇒

SCL/SCG

15

Thread Conditional
Assign-
ment

Concurrency Delay

SCL t if (c) s1 else s2 x = e fork t1 par t2 join pause

SCG

Dataflow Synthesis

16

Priority-Based Synthesis
• More software-like

• Don't emulate control flow with guards/basic
blocks, but with program counters/threads

• Priority-based thread dispatching

• SCLP: SCL + PrioIDs

• In C: implemented as macros, using
computed gotos

• In Java: no macros, no gotos;
use while + break to emulate gotos

• Already more readable than dataflow/circuit
synthesis, but model structure still lost

17

THREAD_STATES

Disabled

Enabled

Active

Inactive

pause tick

[-]

fork

join

[-]

Priority-Based Synthesis

18

Priority

Based on data

dependencies

PrioID

Based on Priority &

ThreadID, must be

run-time unique

18

22

Now: State-Based Synthesis

A: Interface

B: Root context

C: Region R0

D: Region R1

All regions and the root have a context struct

Data dependency (green dashed arrow)

- Env. calls reset() & tick()

- ThreadStatus:

23

Hierarchical Call Tree

rootState: stateExample()

24

State Machine Pattern I

• Respect naming

• Automated comments

• Hierarchical hide details in functions

25

State Machine Pattern II
• State functions include

outgoing transitions

• Trigger/effects naming

• Transition priorities -> Order

26

Priority-Based State Machines

1. Transform away extended SCChart features

2. Transform core SCChart down to SCG

3. Schedule, at SCG node granularity

4. Try to recover SCChart structure

5. Translate to C/Java

• Pro: Can handle arbitrary (static) schedules

• Con: May loose some of original structure/naming

27

„Lean“ State Machines

1. Transform away extended SCChart features

2. Transform core SCChart down to SCG

3. Schedule, at SCG node granularity

4. Try to recover SCChart structure

5. Translate to C/Java

28

„Lean“ State Machines

1. Transform away extended SCChart features

2. Schedule, at SCChart-region granularity

3. Translate to C/Java

• Pro: Compact code, close to original model

• Con: Cannot handle back-and-forth

communication

29

Demo

Part III

User Study

31

Study Goal & Setup

• Compare SM code generation to multiple other

approaches (netlist & priority)

• Compare versions with and without auto generated

comments

Increase readability of SM code

G
O

A
L

Assumption* : Increased readability essential eases

manual verification step

(* to be validated in future work)

Reverse

engineer

(task)

… g0 = _GO;

if(g0){ O = 0; }
g2 =(PRE_g1);

_cg2 = A;

g1 =(g0||(g2&&(!(_cg2))));
g3 =(g2&&_cg2);

if(g3){ O = 1; }

g5 =(PRE_g4);
g4 =(g3||g5); … Rate functionality

and appearance

Generated code

Reverse eng.

SCChart

Original

SCChart

• Confidence

• Time

32

Study

Netlist Priority State-based

All based on similar SCCharts

33

Study Results I

• Experiments aborted after 20 Minutes

• State I and II, two groups get first commented or non-

commented version

• State-based: Significantly better in time AND confidence

34

Study Results II

[Dark: Naming, Light:+superflous states/regions]

• Comments helped to increase functional and appearance

correctness

• Prio has advantage over netlist-based approach

• State-based: Significantly better in both categories

35

Study Results III

• Study how benefits affect the execution time

• Result: Affected, but limited / reasonable

weakness (trade-off)

State-based

-> Future Work

36

• Statemachine-Based Compilation (this presentation)
Christian Motika, Steven Smyth and Reinhard von Hanxleden. Synthesizing Manually Verifiable Code for Statecharts. Reactive and Event-based

Languages & Systems (REBLS ‘18), Boston, Nov. 2018.

• SCCharts Overview
Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael Mendler, Joaquín Aguado, Stephen Mercer, Owen O’Brien.

SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications.

Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’14), Edinburgh, UK, June 2014. ACM.

• Interactive Model-based Compilation
- Christian Motika, Steven Smyth and Reinhard von Hanxleden. Compiling SCCharts — A case-study on interactive model-based compilation. ISoLA

2014, Corfu, Greece, October 2014

- Christian Motika. SCCharts – Language and Interactive Incremental Compilation. PhD Thesis, Kiel University, December 2017

• SCCharts Netlist-based Compilation
Steven Smyth, Christian Motika and Reinhard von Hanxleden. A Data-Flow Approach for Compiling the Sequentially Constructive Language (SCL).

18. Kolloquium Programmiersprachen und Grundlagen der Programmierung (KPS 2015), Pörtschach, Austria, 5-7 October 2015

• OO SCCharts
Alexander Schulz-Rosengarten, Steven Smyth and Michael Mendler. Towards Object-Oriented Modeling in SCCharts. Forum on Specification

and Design Languages (FDL 2019), Southampton, Sep. 2019

• Timed SCCharts
Alexander Schulz-Rosengarten, Reinhard von Hanxleden, Frédéric Mallet, Robert de Simone and Julien Deantoni. Timed SCCharts. Forum

on Specification and Design Languages (FDL 2018), Verona, Sep. 2018

• Hardware Synthesis
Francesca Rybicki, Steven Smyth, Christian Motika, Alexander Schulz-Rosengarten and Reinhard von Hanxleden. Interactive Model-Based

Compilation Continued – Interactive Incremental Hardware Synthesis for SCCharts. Proceedings of the 7th International Symposium on Leveraging

Applications of Formal Methods, Verification and Validation (ISoLA 2016), LNCS, 2016.

• Underlying Sequentially Constructive Model of Computation
Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado, Björn Duderstadt, Insa Fuhrmann, Christian Motika, Stephen Mercer, Owen O’Brien,

Partha Roop. Sequentially Constructive Concurrency—A Conservative Extension of the Synchronous Model of Computation. ACM Transactions on

Embedded Computing Systems, Special Issue on Applications of Concurrency to System Design, 13(4s):144:1–144:26, July 2014.

To Go Further

38

Summary
State-based approach:

• Synthesized code preserves structure of model

• Trade-off between code simplicity and generality

• Used in aerospace and railway domain

Future work:

• Further optimizations

• Performance analysis

• Debugging integrated with host code

That‘s all, folks!

