
MPPA and its use on Real-Time Systems

Matheus Schuh PhD CIFRE Candidate
1st year

Academic Supervisors: Claire MAIZA
Pascal RAYMOND

Industrial Supervisor: Benoît Dupont de DINECHIN

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 1 / 35



Outline

1 Introduction

2 Framework for Code Generation of Synchronous Programs

3 Related Work

4 Evolution of MIA tool

5 MPPA3 modeling

6 Conclusion

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 2 / 35



This talk

Past work from Amaury Graillat1

◮ Parallel Code Generation of Synchronous Programs for a Many-core

Architecture

Past work from Hamza Rihani1

◮ Many-Core Timing Analysis of Real-Time Systems and its application to

an industrial processor

Overview of ongoing work of my thesis
◮ Real-Time Operating Environments for Models of Computation

Annotated with Logical Execution Time
◮ Related work
◮ MIA evolution
◮ MPPA3 modeling

1CAPACITES Project

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 3 / 35



Basic concepts

Real-Time Systems

A system that must provide valid outputs before a deadline

Time-critical: timing constraints are part of the specification

Soft/Hard Real-Time: according to criticality of application

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 4 / 35



Basic concepts

Synchronous Data-Flow languages

Network of nodes

Dependencies and thus order requirements

Lustre (academic), SCADE (industrial), Blech (Bosch)

N1

N2

N3

N4

N5
N6

pre init

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 5 / 35



Outline

1 Introduction

2 Framework for Code Generation of Synchronous Programs

3 Related Work

4 Evolution of MIA tool

5 MPPA3 modeling

6 Conclusion

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 6 / 35



Single-Core Code Generation

Lustre/SCADE ensures formal semantics and determinism

C generated code inherits these properties

Static schedule given by data-flow programs

WCET2 analysis checks the schedulability

Sequential execution

2Worst Case Execution Time

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 7 / 35



Single-Core Code Generation

Lustre/SCADE ensures formal semantics and determinism

C generated code inherits these properties

Static schedule given by data-flow programs

WCET2 analysis checks the schedulability

Sequential execution

Parallel execution in many-core environments is the challenge

2Worst Case Execution Time

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 7 / 35



Many-Core Code Generation

Extraction of parallelism

Generation of sequential code for each node

1 node → 1 runnable

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 8 / 35



Many-Core Code Generation

Extraction of parallelism

Generation of sequential code for each node

1 node → 1 runnable

Interaction between nodes

Instantaneous communication
◮ Copy output to input
◮ Notify communication channel

Delayed communication (pre/fby operator)
◮ Double buffer and scheduling constraints

Synchronization
◮ Dependencies are compiled into blocking waits

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 8 / 35



Many-Core Code Generation

Extraction of parallelism

Generation of sequential code for each node

1 node → 1 runnable

Interaction between nodes

Instantaneous communication
◮ Copy output to input
◮ Notify communication channel

Delayed communication (pre/fby operator)
◮ Double buffer and scheduling constraints

Synchronization
◮ Dependencies are compiled into blocking waits

What about real-time guarantees with parallel execution?

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 8 / 35



Interference and reaction time

Single-Core
◮ WCET is sufficient

Many-Core
◮ WCET + interference on shared resources = WCRT3

WCRT
◮ Most precise approach is too complex
◮ Naive approach is too pessimistic

Timing analysis is made based on
◮ Knowledge of hardware: MPPA
◮ Knowledge of software: Synchronous Data-Flow
◮ Hypothesis of time-triggered execution

Multi-Core Interference Analysis (MIA) tool

3Worst Case Response Time

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 9 / 35



Framework Execution Model

Platform

Bare metal

Mono-rate non-preemptive static schedule

Mapping between runnables and cores done by external tool

Task activation

Time-triggered execution

MIA: release dates respecting data dependencies and timing

Banked Memory

One bank for each core: code, input buffers and local variables

Execute in a local bank, write to a remote bank

Interference on communication only

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 10 / 35



Framework Overview

Data-flow application

N1

N2

N3

N4

N5
N6

pre init

Functional Code
N1.c N2.c N3.c
N4.c N5.c N6.c

Parallelism
Extraction

Communication and
Dependency graph

Mapping +
Non-preemptive

scheduling

N1 N2 N3

N4 N5
N6

Code Generation
System +

Communication
Executable
for KalrayWCET Analysis

release datesMIA

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 11 / 35



Outline

1 Introduction

2 Framework for Code Generation of Synchronous Programs

3 Related Work

4 Evolution of MIA tool

5 MPPA3 modeling

6 Conclusion

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 12 / 35



Event-triggered vs Time-Triggered

Event-Triggered

Tasks start as soon as their dependencies are satisfied

Good for high performance

May introduces temporal indeterminism

Time-Triggered

Total control of when tasks start

Mainly done statically

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 13 / 35



Different approaches

Temporal Isolation: Quentin Perret
◮ Application domain: avionic
◮ Phased execution that forces isolation

Run-time adaptation: Stefanos Skalistis
◮ Parallel interference-sensitive run-time adaptation mechanism
◮ Based on the actual execution time of tasks

Interference Delay into schedulability analysis: Benjamin
Rouxel

◮ Contention-aware scheduling strategies
◮ Minimize the pessimism of the global response time

Compiler-level Integration: Dumitru Potop-Butucaru
◮ Real-time systems compilation
◮ Allows interferences for better efficiency

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 14 / 35



Outline

1 Introduction

2 Framework for Code Generation of Synchronous Programs

3 Related Work

4 Evolution of MIA tool

5 MPPA3 modeling

6 Conclusion

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 15 / 35



Multi-Core Interference Analysis

Inputs

Set of release date of all tasks

Dependent tasks

WCET in isolation + WC number of accesses

Main idea

Bounded interference

Time-triggered execution

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 16 / 35



Original algorithm example

0. Input (Isolated WCET)

2. Adjust release dates

1. Estimate current interference

3. Check schedulability

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 17 / 35



Original algorithm in detail

Method

1 Start with initial release dates

2 Compute response times (1st fixed point) + interferences

3 Update the release dates

4 Repeat until no release date changes (2nd fixed point)

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 18 / 35



Original MIA

Developed during Hamza thesis with this iterative algorithm

Complexity of O(n4)
◮ Where n is the number of tasks

Stopped converging for hundred of tasks
◮ Scalability issues

Written in C++

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 19 / 35



New interference calculation algorithm

Accepted paper @ DATE 2020

Complexity of O(n2)
◮ No nested loops within all tasks
◮ No fixed-point iteration

Scales to thousands of tasks

Written in Python

Collaboration with LIP
◮ Matthieu Moy
◮ Maximilien Dinechin

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 20 / 35



New algorithm example

PE0

PE1

PE2

PE3

n0 n1 n2

n3 n4

n5 n6 n7

n8 n9 n10

t

Closed: n6 t is after their finish date

Alive: n0, n4, n9 t is between release date and finish date

Opening: n7 t is at their release date

Future: n1, n2, n10 t is before their finish date

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 21 / 35



New algorithm in detail

Method

1 Start t = 0 and at each iteration jumps to the smaller value of:
◮ The nearest end of alive tasks
◮ The minimal release date of future tasks

2 Tasks with their dependencies satisfied are scheduled and the
interference with alive tasks is calculated

◮ They cannot interfere with dead tasks
◮ Their interference with future tasks is yet to be computed

3 When a task is scheduled
◮ Its release date is definitely set
◮ Will not move with future tasks

Complexity reduction

Only tasks in the alive group need to be considered for

interference calculation

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 22 / 35



Experimental Results

LS = 4

101 102 103 104 105

10−2

10−1

100

101

102

103

nodes

ti
m

e
(s
)

New (Python)

O(n1.03)
Old (C++)

O(n3.71)

NL = 4

101 102 103

10−2

10−1

100

101

102

103

nodes

ti
m

e
(s
)

New (Python)

O(n1.75)
Old (C++)

O(n4.52)

LS = 16

101 102 103 104

10−1

100

101

102

103

nodes

ti
m

e
(s
)

New (Python)

O(n1.02)
Old (C++)

O(n4.39)

NL = 16

101 102 103

10−2

10−1

100

101

102

103

nodes

ti
m

e
(s
)

New (Python)

O(n1.89)
Old (C++)

O(n4.64)

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 23 / 35



Experimental Results

LS = 64

102 103 104

10−2

10−1

100

101

102

103

nodes

ti
m

e
(s
)

New (Python)

O(n1.1)
Old (C++)

O(n5.09)

NL = 64

102 103 104

10−1

100

101

102

103

nodes

ti
m

e
(s
)

New (Python)

O(n1.91)
Old (C++)

O(n4.94)

Key numbers

LS64 with 256 tasks
◮ C++: 1121.79s × Python: 4.13s
◮ 270 times faster

NL64 with 384 tasks
◮ C++: 535.24s × Python: 0.9s
◮ 593 times faster

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 24 / 35



Outline

1 Introduction

2 Framework for Code Generation of Synchronous Programs

3 Related Work

4 Evolution of MIA tool

5 MPPA3 modeling

6 Conclusion

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 25 / 35



Coolidge overview

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 26 / 35



Key modeling points

Intra-Cluster arbitration

Cache L1 arbiter: Fixed-Priority for DC, LD.U and STORE
◮ Code static analysis to determine longest DC interactions

Shared Memory arbiter: Configurable Round-Robin
◮ Per cluster configuration
◮ Determines how many requests each initiator can issue at a time

Inter-Cluster arbitration

Interaction with DMA NoC on MPPA3 is different

New Crossbar (AXI)
◮ Point to point connection between clusters
◮ Deficit Round-Robin arbitration at cluster arrival point

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 27 / 35



Intra-Cluster arbitration

IC0

DC0

LD.U

STORE

FP

pr
io

rit
y

IC15

DC15

LD.U

STORE

FP

pr
io

rit
y

Level 1

P0

P15

RM

DSU

Crypto

Accel1

Crypto

Accel2

NoC Tx

NoC Rx

AXIWrite

AXIRead

CRR

Level 2

Shared

memory

bank

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 28 / 35



Inter-Cluster arbitration

P0

P15

AXIWrite

AXIRead

CRR

AXI

virtual

bank

Level 1: CC0

CC1

CC2

DRR

Level 2: AXI

P0

P15

AXIWrite

AXIRead

CRR
Target

memory

bank

Level 3: CC3

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 29 / 35



Difficulties

New arbitration policies

1 FP: Cache L1

2 CRR: SMEM

3 DRR: Crossbar

◮ Timing analysis is harder
◮ More caveats than a RR or TDMA

Hardware was not ready yet (now it is!)
◮ Simulator does not model these details
◮ No way to verify the accuracy of our model

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 30 / 35



Outline

1 Introduction

2 Framework for Code Generation of Synchronous Programs

3 Related Work

4 Evolution of MIA tool

5 MPPA3 modeling

6 Conclusion

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 31 / 35



Thesis objectives

Right abstraction level for efficient implementation of Real-Time
applications

◮ RTOS4

◮ High-level communication layer, such as DDS5

◮ More generic than bare metal w/o losing flexibility

Versatile model of computation
◮ Lustre/SCADE
◮ Simulink
◮ LET, such as Giotto
◮ PREM (Predictable Execution Model)
◮ Mixed criticality

4Real-Time Operating System
5Data Distribution Service

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 32 / 35



Revisited Framework Overview

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 33 / 35



Ongoing/Future work

Ongoing

PREM on MPPA2

SCADE MPPA3 Integration

Future

Experiments with RTOS tasks generation

Possibly LET

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 34 / 35



Thanks for your attention!

Questions?

You cand find me at

matheus.schuh@univ-grenoble-alpes.fr

http://www-verimag.imag.fr/~schuhm/

Matheus Schuh MPPA and Real-Time Systems 25/11/2019 35 / 35


	Introduction
	Framework for Code Generation of Synchronous Programs
	Related Work
	Evolution of MIA tool
	MPPA3 modeling
	Conclusion

