
Outline

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 2 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 3 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Distributed Systems Algorithms

• Process
◮ Autonomous
◮ Interconnected

• Hypotheses
◮ Connected
◮ Bidirectional
◮ Identified

• Expected Property
◮ Fault-tolerance

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 4 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Self-Stabilizing Algorithms

Configurations

Time

L
e
g
it
im

a
te

Il
le

g
it
im

a
te

Stabilization time

Transient faults

Legitimate

configurations

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 5 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Atomic (Synchronous?) State Model
Performing an Atomic Step consists in:

1. Reading neighbors variables

2. Computing enabled nodes

3. Choosing nodes to activate: a Daemon models the asynchronism

4. Computing a new configuration

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 6 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Goal: Study the Algorithm Complexity

• Space Complexity: memory requirement in bits

• Time Complexity (mainly stabilization time) in
◮ steps, moves
◮ rounds: capture the execution time of the slowest processes

1st round 2nd round

P
ro

c
e

s
s
e

s

Time

Key: Enabled Activated Neutralized

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 7 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Message Passing Versus Atomic State Models

• Message Passing Model (MPM)
◮ Used in the Distributed Algorithms community
◮ Lower-level: queues of events

• Atomic State Model (ASM):
◮ Used in the Self-Stabilizing Algorithms community
◮ Higher-level: atomic instantaneous communications
◮ General Algorithms transformations into MPM methods exist

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 8 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Some Classical Examples

• Dijkstra’s Token Ring

• Coloring Algo

• Synchronous Unison

• A-Synchronous Unison

• BFS spanning tree

• DFS spanning tree [Collin-Dolex-94]

"Introduction to Distributed Self-Stabilizing Algorithms" Altisen,

Devismes, Dubois, Petit 2019.

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 9 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Dijkstra’s Token Ring (1/2)

Get a unique Token that Circulates in rooted unidirected ring

For Root process

• Parameters:
◮ p.Pred : the predecessor of p in the ring
◮ K : a positive integer

• Local Variable:
◮ p.v ∈ {0, ...,K −1}

• Action:
◮ T :: p.v = p.Pred .v →֒ p.v ← (p.v +1)mod K

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 10 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Dijkstra’s Token Ring (2/2)

For each Non-Root process

• Parameters:
◮ p.Pred : the predecessor of p in the ring
◮ K : a positive integer

• Local Variable:
◮ p.v ∈ {0, ...,K −1}

• Action:
◮ T :: p.v 6= p.Pred .v →֒ p.v ← p.Pred .v

cd test/dijkstra; rdbg -sut "sasa ring.dot

–distributed-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 11 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Coloring Algo

For each process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ K : an integer such that K ≥∆

• Local Variable:
◮ p.c ∈ {0, ...,K} holds the color of p

• Macros:
◮ Used(p) = {q.c : q ∈ p.N}
◮ Free(p) = {0, ...,K}\Used(p)

• Predicate:
◮ Conflict(p) = ∃q ∈ p.N : q.c = p.c

• Action:
◮ Color :: Conflict(p) →֒ p.c←min(Free(p))

cd test/coloring; rdbg -sut "sasa grid4.dot

–locally-central-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 12 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Synchronous unison

For each process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ m : an integer such that m ≥max(2,2×D−1)

• Local Variable:
◮ p.c ∈ {0, ...,m−1} holds the clock of p

• Macro:
◮ NewClockValue(p) = (min({q.c : q ∈ p.N}∨{p.c})+1mod m

• Action:
◮ Incr :: p.c 6= NewClockValue(p) →֒ p.c← NewClockvalue(p)

cd test/unison; rdbg -sut "sasa ring.dot –synchronous-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 13 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

A-Synchronous Unison

For each process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ K : an integer such that K ≥ n2

• Local Variable:
◮ p.c ∈ {0, ...,K −1} holds the clock of p

• Predicate:
◮ behind(a,b) = ((b.c−a.c) mod K)≤ n

• Actions:
◮ I :: ∀q ∈ p.N,behind(p,q) →֒ p.c← (p.c+1) mod K
◮ R :: p.c 6= 0∧ (∃q ∈ p.N,¬behind(p,q)∧¬behind(q,p)) →֒ p.c← 0

cd test/async-unison; rdbg -sut "sasa ring.dot

–central-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 14 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

BFS Spanning tree (1/2)

For the Root process

• Parameters:
◮ root .N : the set of root’s neighbors
◮ D : an integer such that D ≥D

• Local Variable:
◮ root .d ∈ {0, ...,D} holds the distance to the root

• Action:
◮ CD :: root .d 6= 0 →֒ root .d ← 0

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 15 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

BFS Spanning tree (2/2)

For each non-Root process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ D : an integer such that D ≥D

• Variables:
◮ p.d ∈ {0, ...,D} holds the distance to the root
◮ p.par ∈ p.N holds the parent pointer of p

• Macros:
◮ Dist(p) = min{q.d : q ∈ p.N}
◮ DistOK (p) = p.d −1 = min{q.d : q ∈ p.N}

• Actions:
◮ CD :: p.d 6= Dist(p) →֒ p.d ← Dist(p)
◮ CP ::

DistOK (p)∨p.par .d 6= p.d−1 →֒ p.par← q ∈ p :Ns.t .q(d)= p(d)−1

cd test/bfs; rdbg -sut "sasa fig51.dot –distributed-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 16 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

DFS Spanning Tree (1/2)

For the Root process

• Parameters:
◮ p.N : the set of root’s neighbors
◮ δ : a integer ≥ n

• Local Variable:
◮ p.path : an array integers of size δ

• Action:
◮ Path :: p.path 6= [] →֒ p.pathgets[]

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 17 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

DFS Spanning Tree (2/2)

For each Non-Root process

• Parameters:
◮ p.N : the set of process’s neighbors
◮ δ : a integer ≥ n

• Local Variables:
◮ p.par ∈ {0, ..., |p.N|−1} the parent of the process
◮ p.path : an array integers of size δ

• Macros:
◮ ComputePar(p.N) = [...]
◮ ComputePath(p.N) = [...]

• Actions:
◮ Par :: p.par 6= ComputePar(p.N) →֒ p.pargetsComputePar(p.N)
◮ Path ::

p.path 6= ComputePath(p.N) →֒ p.pathgetsComputePath(p.N)

cd test/dfs; rdbg -sut "sasa g.dot"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 18 / 54 >

Simulation of Self-stabilizing Algorithms

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 19 / 54 >

Simulation of Self-stabilizing Algorithms

Simulating Self-stabilizing Algorithms: What for?

• Debugging
◮ Simulate existing algorithms
◮ Design new algorithms

• Get Insights on the Algorithms Complexity
◮ Average case Complexity
◮ Check if the theoretical worst case is good/correct
◮ etc.

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 20 / 54 >

Simulation of Self-stabilizing Algorithms

Existing Simulators of Distributed Systems

• Most simulators work with the Message passing Model (MPM)

• Networking Simulators
◮ Architecture-*dependent*
◮ Measures Wall-clock simulation time

• Systematic Methods exist to translate ASM into MPM, but
◮ not the same level of abstractions: not good for debugging
◮ loose relation with the number of steps, moves, or rounds in the

ASM
◮ being lower-level, simulations can be very slow: restricted to small

topology and simple algorithms

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 21 / 54 >

Simulation of Self-stabilizing Algorithms

Simulators Dedicated to Self-Stabilization

A few Simulators Dedicated to Self-Stabilization exist but

• tailored to specific needs
◮ mutual exclusion
◮ leader election

• provides a few features
◮ work on Specific Topologies
◮ can check pre-defined properties only (e.g., convergence)
◮ small set of predefined Daemons
◮ complexity in steps only (no moves, no rounds)

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 22 / 54 >

Simulation of Self-stabilizing Algorithms

What is missing to the Self-Stabilizing community?

A Simulator able to:

• handle any algorithm written in the ASM
◮ simulation close to the model
◮ light-weight

• check any property, in terms of steps, moves, or rounds

• to define what the Legitimate Configurations are

• be used with any daemon

Well. . . Not anymore!

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 23 / 54 >

SASA

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 24 / 54 >

SASA

SASA: main features

• Batch Simulations
◮ Debug Algorithms
◮ Perform simulation campaigns,

Study the influence of some parameters

Evaluate the (average-case) complexity Lower bounds

• Test oracles to formalize expected properties

◮ involve the number of steps, moves, or rounds to reach a legitimate

configuration (differs from algorithms).

• Daemon can be configured
◮ Predefined: synchronous, central, locally central, or distributed
◮ Custom daemons: manual or programmed

• Interactive Simulations
◮ step by step, or round by round, forward or backward
◮ while visualizing the network, the enabled, the activated actions
◮ New commands can also be programmed

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 25 / 54 >

SASA

Defining The Network Topology

• Take advantage of the GraphViz dot language
◮ Simple syntax
◮ Open-source
◮ Plenty of visualizers, editors, parsers, exporters

• dot attributes
◮ name-value pairs that can be ignored (pragmas)
◮ node attributes: algo, init
◮ graph attributes: global simulation parameters

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 26 / 54 >

SASA

A Topology Example: a 4x4 grid

graph g {

graph [n=24]

p0 [algo="p.ml" init="0"] p0 -- p1 -- p2 -- p3 -- p7

p1 [algo="p.ml" init="17"] p0 -- p4 -- p5 -- p6

p2 [algo="p.ml" init="18"] p11-- p15

p3 [algo="p.ml" init="19"] p1 -- p5 -- p9

p4 [algo="p.ml" init="17"] p10 -- p11 -- p7

p5 [algo="p.ml" init="18"] p10 -- p14 -- p15

p6 [algo="p.ml" init="19"] p10 -- p6

p7 [algo="p.ml" init="20"] p10 -- p9

p8 [algo="p.ml" init="18"] p12 -- p13 -- p14

p9 [algo="p.ml" init="19"] p12 -- p8 -- p9

p10 [algo="p.ml" init="20"] p13 -- p9

p11 [algo="p.ml" init="21"] p2 -- p6 -- p7

p12 [algo="p.ml" init="19"] p4 -- p8

p13 [algo="p.ml" init="20"] }

p14 [algo="p.ml" init="21"]

p15 [algo="p.ml" init="22"]

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 27 / 54 >

SASA

Algorithm Programming Interface

• 37 straightforward loc of Ocaml Interface (mli) file (162 with

comments)
• Local states are polymorphic

type ’s neighbor

val state: ’s neighbor -> ’s

• Users need to define 4 things:
1. a list of action labels

2. an enable function, which encodes the guards of the algorithm

3. a step function, that triggers enabled actions

4. a state initialization function (used if not provided in the DOT file)

type action = string

type ’s enable_fun = ’s -> ’s neighbor list -> action list

type ’s step_fun = ’s -> ’s neighbor list -> action -> ’s

type ’s state_init_fun = int -> ’s

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 28 / 54 >

SASA

Algorithm Programming Interface (2/4)

Each node can get (or not) information on its neighbors:

exception Not_available

val state : ’s neighbor -> ’s

val pid : ’s neighbor -> string

val spid : ’s neighbor -> string

val reply : ’s neighbor -> int

val weight: ’s neighbor -> int

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 29 / 54 >

SASA

Algorithm Programming Interface (3/4)

Some of the topological information can be accessed:

val card: unit -> int

val links_number : unit -> int

val diameter: unit -> int

val min_degree : unit -> int

val mean_degree : unit -> float

val max_degree: unit -> int

val is_cyclic: unit -> bool

val is_connected : unit -> bool

val is_tree : unit -> bool

...

val get_graph_attribute : string -> string

37 straightforward loc

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 30 / 54 >

SASA

Algorithm Programming Interface (3/4)

Registration

type ’s algo_to_register = {

algo_id : string;

init_state: int -> ’s;

enab : ’s enable_fun;

step : ’s step_fun;

actions : action list option }

type ’s to_register = {

algo : ’s algo_to_register list;

state_to_string: ’s -> string;

state_of_string: (string -> ’s) option;

copy_state: ’s -> ’s }

val register : ’s to_register -> unit

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 31 / 54 >

SASA

The SASA Core Simulator Architecture

generates

loads

generatesreads

reads

ocaml

Network Topology

sasa Simulation Data

Dynamic LibraryAlgorithm
[bin]

[.dot file]

[.rif file]

[bin]

[.cmxs files]
[.ml files]

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 32 / 54 >

SASA

Dijkstra’s Token Ring For Root (1/2)

• Parameters:
◮ p.Pred : the

predecessor of p in the

ring
◮ K : a positive integer

• Local Variable:
◮ p.v ∈ {0, ...,K −1}

• Action:
◮ T :: p.v = p.Pred .v →֒

p.v ← (p.v +1)mod K

open Algo

let k = 42

let init_state _ = Random.int k

let enable_f e nl =

let pred = List.hd nl in

if e = state pred then ["T"] else []

let step_f e nl _ = (e + 1) mod k

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 33 / 54 >

SASA

Dijkstra’s Token Ring For each Non-Root (2/2)

• Parameters:

p.Pred : the predecessor of p

in the ring

K : a positive integer

• Local Variable:

p.v ∈ {0, ...,K −1}

• Action:

T :: p.v 6= p.Pred .v →֒ p.v ←
p.Pred .v

open Algo

let k = 42

let init_state _ = Random.int k

let enable_f e nl =

if e<>state (List.hd nl) then ["T"]

else []

let step_f e nl a = state (List.hd nl)

cd test/dijksra; rdbg -sut "sasa

ring.dot –distributed-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 34 / 54 >

SASA

Coloring Algo

• Parameters:
p.N : the set of p’s neighbors ;
K : an integer such that K ≥∆

• Local Variable:
p.c ∈ {0, ...,K} holds the color of p

• Macros:
Used(p) = {q.c : q ∈ p.N}
Free(p) = {0, ...,K}\Used(p)

• Predicate:
Conflict(p) = ∃q ∈ p.N : q.c = p.c

• Action:
Color :: Conflict(p)
→֒ p.c←min(Free(p))

open Algo

let k=3

let init_state _ = Random.int k

let neigbhors_vals nl = List.map (fun n -> state n) nl

let confl v nl = List.mem v (neigbhors_vals nl)

let free nl =

let confll = List.sort_uniq compare (neigbhors_vals nl) in

let rec aux free confl i =

if i > k then free else

(match confl with

| x::tail ->

if x=i then aux free tail (i+1)

else aux (i::free) confl (i+1)

| [] -> aux (i::free) confl (i+1)

)

in

List.rev (aux [] confll 0)

let enable_f e nl=if (confl e nl) then ["conflict"] else []

let step_f e nl a = if free nl = [] then e else List.hd f

let actions = Some ["conflict"]

cd test/coloring; rdbg -sut "sasa

grid4.dot –locally-central-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 35 / 54 >

Integration with Synchronous tools

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 36 / 54 >

Integration with Synchronous tools

Algorithms in the ASM viewed as Reactive programs

loop:

1. Reads neighbors vars

2. Computes pi_enab

3. Chooses pi_act (Daemon)

4. Computes states (pi_act)

loop:

• 4. Init -> Computes states (pi_act)

• 1. Reads neighbors vars

• 2. Computes pi_enab

• 3. Chooses pi_act (Daemon)

p1_act

p2_act

p3_act

p4_act

p5_act

p7_act

p6_act

p2_enab

p3_enab

p4_enab

p5_enab

p7_enab

p6_enab

p1_enab

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 37 / 54 >

Integration with Synchronous tools

The LURETTE dataflow

LUCIOLE

ENV SUT oracle

.rif

sim2chro

gnuplot−rif

PRE

Figure: The LURETTE dataflow schema

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 38 / 54 >

Integration with Synchronous tools

RDBG

LUCIOLE

ENV SUT oracle

.rif

sim2chro

gnuplot−rif

PRE

Figure: The RDBG dataflow schema

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 39 / 54 >

Integration with Synchronous tools

RDBG

LUCIOLE

ENV SUT oracle

.rif

sim2chro

gnuplot−rif

PRE

Figure: The RDBG dataflow schema

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 40 / 54 >

Integration with Synchronous tools

Lurette and Test Oracles

• All Book theorems formalized in Lustre

• Heavy use Lustre V6 genericity to write Topology Independant

Oracles

include "../lustre/oracle_utils.lus"

node theorem_5_18<<const an : int; const pn: int>> (Enab, Acti: bool^an^pn)

returns (res:bool);

var

Round:bool;

RoundNb:int;

Silent:bool;

let

Round = round <<an,pn>>(Enab,Acti);

RoundNb = count(Round);

Silent = silent<<an,pn>>(Enab);

res = (RoundNb >= diameter+2) => Silent ; -- from theorem 5.18 page 57

tel

node bfs_spanning_tree_oracle<<const an:int; const pn:int>> (Enab, Acti: bool^an^pn)

returns (ok:bool);

let

ok = lemma_5_16 <<an,pn>> (Enab, Acti) and theorem_5_18<<an,pn>> (Enab, Acti);

tel

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 41 / 54 >

Integration with Synchronous tools

Lurette and Lutin Environments

• Stochastic Reactive Language

• Designed to model Reactive Programs Environments

• Could be used to program custom Daemons with feedback
◮ To explore worst cases
◮ To simulate Algo that deals with Shared Resources

cd test/dijkstra; rdbg -env "sasa ring.dot –custom-demon"

-sut-nd "lutin ring.lut -n distributed"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 42 / 54 >

Integration with Synchronous tools

RDBG

Synchron’16 (scopes’17)

1. Debug Reactive programs

2. Plugin-based (instrumented runtime): Lustre, Lutin

3. Programmable
◮ run: unit -> Event.t
◮ next: Event.t -> Event.t

Move forward and Backwards (1 slide)

Conditional breakpoints (1 line)

gdb like Breakpoints (1 slide)

Profiling, monitoring, e.g. Computing CFG (~100 loc)

Opening an emacs at the current line (10 loc)

Debugger Customization

etc.

http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/rdbg/README.html

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 43 / 54 >

Integration with Synchronous tools

RDBG and SASA

LUCIOLE

ENV SUT oracle

.rif

sim2chro

gnuplot−rif

PRE

• One can only look at what happens at the interface

• Yet, at lot of thing can be done
◮ move forward or backward from step to step, or rounds to rounds

(40 loc)
◮ Display the graph decorated (200 loc)

with enabled/activated status

local state values

cd test/async-unison; rdbg -sut "sasa grid4.dot

–central-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 44 / 54 >

Performance Evaluation

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 45 / 54 >

Performance Evaluation

Performance Evaluation: Benchmarks Algorithms

We have implemented the following self-stabilizing algorithms:

• [ASY] solves unison in any network, under any daemon

• [SYN] solves the unison problem in any network, under a

synchronous daemon

• [DTR] solves the token circulation problem through a rooted

unidirected ring, under any daemon

• [BFS] builds a BFS spanning tree in any network using a

distributed daemon

• [DFS] builds a DFS spanning tree in any network using a d

istributed daemon

• [COL] solves the coloring algorithm in any network, under a locally

central daemon

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 46 / 54 >

Performance Evaluation

Performance Evaluation: Measurements

• 2 Square Grids
◮ grid.dot: 10 × 10 nodes, 180 links;
◮ biggrid.dot: 100 × 100 nodes, 19800 links;

• 2 Random Graphs built using the Erdös-Rényi model
◮ ER.dot: 256 nodes, 9811 links, average degree 76;
◮ bigER.dot: 2000 nodes, 600253 links, average degree 600.

grid.dot ER.dot biggrid.dot bigER.dot

Time/step Mem Time/step Mem Time/step Mem Time/step Mem

BFS 0.2 ms 13 MB 10.6 ms 49 MB 2.04 s 83 MB 3.03 s 1062 MB
DFS-l 1 ms 44 MB 144.7 ms 63 MB 2.57 s 92 MB 15.83 s 1062 MB
DFS-a 0.5 ms 39 MB 94.3 ms 170 MB 7.64 s 6642 MB 86.93 s 29945 MB
COL 0 ms 7 MB 35.8 ms 63 MB 27.93 s 75 MB 16.81 s 1083 MB
SYN 0.3 ms 38 MB 10.9 ms 63 MB 887.05 s 874 MB 13.58 s 1099 MB
ASY 0.1 ms 38 MB 4.5 ms 63 MB 0.03 s 83 MB 2.82 s 1115 MB

• Time/step = user+system time / | simulation steps |

• Mem = “Maximum resident set size” of GNU time

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 47 / 54 >

Some Design Choices

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 48 / 54 >

Some Design Choices

Polymorphic versus Variant Type

• An alternative to polymorphism to hold processes local state:

type value = I of int | F of float | B of Bool | A of state array | ...

type env = string -> value

But:

• What if one need a type that is not in this variant list?

• Variable values need to be set/get in/from the envt all the time.

let step_f c nl a = let step_f env nl a =

match a with match a with

| "I" -> modulo (c + 1) k | "I" ->

| "R" -> 0 let c_val = match env_get env "c" with

| I i -> i

| _ -> assert false

in

set_env env "c" (I(modulo ((c_val)+1) k))

| "R" -> set_env env "c" (I 0)

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 49 / 54 >

Some Design Choices

Dynamic versus Static Linking

generates

loads

generatesreads

reads

ocaml

Network Topology

sasa Simulation Data

Dynamic LibraryAlgorithm
[bin]

[.dot file]

[.rif file]

[bin]

[.cmxs files]
[.ml files]

• Dynamic Linking: Pros
◮ Easier to use
◮ Save Disk space
◮ Separation of concerns: user code only depends on a simple API

• Dynamic Linking: Cons
◮ Can not be combined gently with Polymorphic values!

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 50 / 54 >

Some Design Choices

Dynamic Type Checking of Polymorphic Nodes

• Dynamic linking in OCAML needs to be done via imperative tables
◮ The code to be linked registers functions into tables
◮ The main executable reads the tables of functions

• But storing polymorphic values into a mutable data-type is not

possible in ML-like languages; one can only store so-called

weakly polymorphic values!

• Weak variables can’t escape the scope of a compilation unit

https://ocamlverse.github.io/content/weak_type_variables.html

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 51 / 54 >

Some Design Choices

Dynamic Type Checking of Polymorphic Nodes

• Solution: use the (evil) Obj module:
◮ Obj.obj: ’a -> t: to register polymorphic functions into tables
◮ Obj.repr: t -> ’a: to retrieve them from the simulation engine

• Using Obj breaks type safety: how to prevent users to register

functions of different type?

By forcing all functions to be registrated at the same time:

type ’s algo_to_register = {

algo_id : string;

init_state: int -> ’s;

enab : ’s enable_fun;

step : ’s step_fun;

actions : action list option }

type ’s to_register = {

algo : ’s algo_to_register list; (* <==== ALL AlGO HAVE THE SAME TYPE! *)

state_to_string: ’s -> string;

state_of_string: (string -> ’s) option;

copy_state: ’s -> ’s }

val register : ’s to_register -> unit

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 52 / 54 >

Conclusion

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 53 / 54 >

Conclusion

Conclusion

• An open-source SimulAtor of Self-stabilizing Algorithms

• writen using the atomic-state model (the most commonly used in

Self-Stab)

• Rely on existing tools as much as possible
◮ dot for Graphs
◮ ocaml for programming local algorithms
◮ Synchrone (Verimag) Team Tools for simulation

• Installation via
◮ docker
◮ opam
◮ git

https://verimag.gricad-pages.univ-grenoble-alpes.fr/synchrone/sasa

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 54 / 54 >

Outline

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 2 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 3 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Distributed Systems Algorithms

• Process
◮ Autonomous
◮ Interconnected

• Hypotheses
◮ Connected
◮ Bidirectional
◮ Identified

• Expected Property
◮ Fault-tolerance

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 4 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Self-Stabilizing Algorithms

Configurations

Time

L
e
g
it
im

a
te

Il
le

g
it
im

a
te

Stabilization time

Transient faults

Legitimate

configurations

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 5 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Atomic (Synchronous?) State Model
Performing an Atomic Step consists in:

1. Reading neighbors variables

2. Computing enabled nodes

3. Choosing nodes to activate: a Daemon models the asynchronism

4. Computing a new configuration

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 6 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Goal: Study the Algorithm Complexity

• Space Complexity: memory requirement in bits

• Time Complexity (mainly stabilization time) in
◮ steps, moves
◮ rounds: capture the execution time of the slowest processes

1st round 2nd round

P
ro

c
e
s
s
e
s

Time

Key: Enabled Activated Neutralized

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 7 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Message Passing Versus Atomic State Models

• Message Passing Model (MPM)
◮ Used in the Distributed Algorithms community
◮ Lower-level: queues of events

• Atomic State Model (ASM):
◮ Used in the Self-Stabilizing Algorithms community
◮ Higher-level: atomic instantaneous communications
◮ General Algorithms transformations into MPM methods exist

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 8 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Some Classical Examples

• Dijkstra’s Token Ring

• Coloring Algo

• Synchronous Unison

• A-Synchronous Unison

• BFS spanning tree

• DFS spanning tree [Collin-Dolex-94]

"Introduction to Distributed Self-Stabilizing Algorithms" Altisen,

Devismes, Dubois, Petit 2019.

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 9 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Dijkstra’s Token Ring (1/2)

Get a unique Token that Circulates in rooted unidirected ring

For Root process

• Parameters:
◮ p.Pred : the predecessor of p in the ring
◮ K : a positive integer

• Local Variable:
◮ p.v ∈ {0, ...,K −1}

• Action:
◮ T :: p.v = p.Pred .v →֒ p.v ← (p.v +1)mod K

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 10 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Dijkstra’s Token Ring (2/2)

For each Non-Root process

• Parameters:
◮ p.Pred : the predecessor of p in the ring
◮ K : a positive integer

• Local Variable:
◮ p.v ∈ {0, ...,K −1}

• Action:
◮ T :: p.v 6= p.Pred .v →֒ p.v ← p.Pred .v

cd test/dijkstra; rdbg -sut "sasa ring.dot

–distributed-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 11 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Coloring Algo

For each process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ K : an integer such that K ≥∆

• Local Variable:
◮ p.c ∈ {0, ...,K} holds the color of p

• Macros:
◮ Used(p) = {q.c : q ∈ p.N}
◮ Free(p) = {0, ...,K}\Used(p)

• Predicate:
◮ Conflict(p) = ∃q ∈ p.N : q.c = p.c

• Action:
◮ Color :: Conflict(p) →֒ p.c←min(Free(p))

cd test/coloring; rdbg -sut "sasa grid4.dot

–locally-central-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 12 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Synchronous unison

For each process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ m : an integer such that m ≥max(2,2×D−1)

• Local Variable:
◮ p.c ∈ {0, ...,m−1} holds the clock of p

• Macro:
◮ NewClockValue(p) = (min({q.c : q ∈ p.N}∨{p.c})+1mod m

• Action:
◮ Incr :: p.c 6= NewClockValue(p) →֒ p.c← NewClockvalue(p)

cd test/unison; rdbg -sut "sasa ring.dot –synchronous-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 13 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

A-Synchronous Unison

For each process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ K : an integer such that K ≥ n2

• Local Variable:
◮ p.c ∈ {0, ...,K −1} holds the clock of p

• Predicate:
◮ behind(a,b) = ((b.c−a.c) mod K)≤ n

• Actions:
◮ I :: ∀q ∈ p.N,behind(p,q) →֒ p.c← (p.c+1) mod K
◮ R :: p.c 6= 0∧ (∃q ∈ p.N,¬behind(p,q)∧¬behind(q,p)) →֒ p.c← 0

cd test/async-unison; rdbg -sut "sasa ring.dot

–central-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 14 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

BFS Spanning tree (1/2)

For the Root process

• Parameters:
◮ root .N : the set of root’s neighbors
◮ D : an integer such that D ≥D

• Local Variable:
◮ root .d ∈ {0, ...,D} holds the distance to the root

• Action:
◮ CD :: root .d 6= 0 →֒ root .d ← 0

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 15 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

BFS Spanning tree (2/2)

For each non-Root process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ D : an integer such that D ≥D

• Variables:
◮ p.d ∈ {0, ...,D} holds the distance to the root
◮ p.par ∈ p.N holds the parent pointer of p

• Macros:
◮ Dist(p) = min{q.d : q ∈ p.N}
◮ DistOK (p) = p.d −1 = min{q.d : q ∈ p.N}

• Actions:
◮ CD :: p.d 6= Dist(p) →֒ p.d ← Dist(p)
◮ CP ::

DistOK (p)∨p.par .d 6= p.d−1 →֒ p.par← q ∈ p :Ns.t .q(d)= p(d)−1

cd test/bfs; rdbg -sut "sasa fig51.dot –distributed-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 16 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

DFS Spanning Tree (1/2)

For the Root process

• Parameters:
◮ p.N : the set of root’s neighbors
◮ δ : a integer ≥ n

• Local Variable:
◮ p.path : an array integers of size δ

• Action:
◮ Path :: p.path 6= [] →֒ p.pathgets[]

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 17 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

DFS Spanning Tree (2/2)

For each Non-Root process

• Parameters:
◮ p.N : the set of process’s neighbors
◮ δ : a integer ≥ n

• Local Variables:
◮ p.par ∈ {0, ..., |p.N|−1} the parent of the process
◮ p.path : an array integers of size δ

• Macros:
◮ ComputePar(p.N) = [...]
◮ ComputePath(p.N) = [...]

• Actions:
◮ Par :: p.par 6= ComputePar(p.N) →֒ p.pargetsComputePar(p.N)
◮ Path ::

p.path 6= ComputePath(p.N) →֒ p.pathgetsComputePath(p.N)

cd test/dfs; rdbg -sut "sasa g.dot"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 18 / 54 >

Simulation of Self-stabilizing Algorithms

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 19 / 54 >

Simulation of Self-stabilizing Algorithms

Simulating Self-stabilizing Algorithms: What for?

• Debugging
◮ Simulate existing algorithms
◮ Design new algorithms

• Get Insights on the Algorithms Complexity
◮ Average case Complexity
◮ Check if the theoretical worst case is good/correct
◮ etc.

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 20 / 54 >

Simulation of Self-stabilizing Algorithms

Existing Simulators of Distributed Systems

• Most simulators work with the Message passing Model (MPM)

• Networking Simulators
◮ Architecture-*dependent*
◮ Measures Wall-clock simulation time

• Systematic Methods exist to translate ASM into MPM, but
◮ not the same level of abstractions: not good for debugging
◮ loose relation with the number of steps, moves, or rounds in the

ASM
◮ being lower-level, simulations can be very slow: restricted to small

topology and simple algorithms

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 21 / 54 >

Simulation of Self-stabilizing Algorithms

Simulators Dedicated to Self-Stabilization

A few Simulators Dedicated to Self-Stabilization exist but

• tailored to specific needs
◮ mutual exclusion
◮ leader election

• provides a few features
◮ work on Specific Topologies
◮ can check pre-defined properties only (e.g., convergence)
◮ small set of predefined Daemons
◮ complexity in steps only (no moves, no rounds)

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 22 / 54 >

Simulation of Self-stabilizing Algorithms

What is missing to the Self-Stabilizing community?

A Simulator able to:

• handle any algorithm written in the ASM
◮ simulation close to the model
◮ light-weight

• check any property, in terms of steps, moves, or rounds

• to define what the Legitimate Configurations are

• be used with any daemon

Well. . . Not anymore!

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 23 / 54 >

SASA

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 24 / 54 >

SASA

SASA: main features

• Batch Simulations
◮ Debug Algorithms
◮ Perform simulation campaigns,

Study the influence of some parameters

Evaluate the (average-case) complexity Lower bounds

• Test oracles to formalize expected properties

◮ involve the number of steps, moves, or rounds to reach a legitimate

configuration (differs from algorithms).

• Daemon can be configured
◮ Predefined: synchronous, central, locally central, or distributed
◮ Custom daemons: manual or programmed

• Interactive Simulations
◮ step by step, or round by round, forward or backward
◮ while visualizing the network, the enabled, the activated actions
◮ New commands can also be programmed

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 25 / 54 >

SASA

Defining The Network Topology

• Take advantage of the GraphViz dot language
◮ Simple syntax
◮ Open-source
◮ Plenty of visualizers, editors, parsers, exporters

• dot attributes
◮ name-value pairs that can be ignored (pragmas)
◮ node attributes: algo, init
◮ graph attributes: global simulation parameters

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 26 / 54 >

SASA

A Topology Example: a 4x4 grid

graph g {

graph [n=24]

p0 [algo="p.ml" init="0"] p0 -- p1 -- p2 -- p3 -- p7

p1 [algo="p.ml" init="17"] p0 -- p4 -- p5 -- p6

p2 [algo="p.ml" init="18"] p11-- p15

p3 [algo="p.ml" init="19"] p1 -- p5 -- p9

p4 [algo="p.ml" init="17"] p10 -- p11 -- p7

p5 [algo="p.ml" init="18"] p10 -- p14 -- p15

p6 [algo="p.ml" init="19"] p10 -- p6

p7 [algo="p.ml" init="20"] p10 -- p9

p8 [algo="p.ml" init="18"] p12 -- p13 -- p14

p9 [algo="p.ml" init="19"] p12 -- p8 -- p9

p10 [algo="p.ml" init="20"] p13 -- p9

p11 [algo="p.ml" init="21"] p2 -- p6 -- p7

p12 [algo="p.ml" init="19"] p4 -- p8

p13 [algo="p.ml" init="20"] }

p14 [algo="p.ml" init="21"]

p15 [algo="p.ml" init="22"]

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 27 / 54 >

SASA

Algorithm Programming Interface

• 37 straightforward loc of Ocaml Interface (mli) file (162 with

comments)
• Local states are polymorphic

type ’s neighbor

val state: ’s neighbor -> ’s

• Users need to define 4 things:
1. a list of action labels

2. an enable function, which encodes the guards of the algorithm

3. a step function, that triggers enabled actions

4. a state initialization function (used if not provided in the DOT file)

type action = string

type ’s enable_fun = ’s -> ’s neighbor list -> action list

type ’s step_fun = ’s -> ’s neighbor list -> action -> ’s

type ’s state_init_fun = int -> ’s

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 28 / 54 >

SASA

Algorithm Programming Interface (2/4)

Each node can get (or not) information on its neighbors:

exception Not_available

val state : ’s neighbor -> ’s

val pid : ’s neighbor -> string

val spid : ’s neighbor -> string

val reply : ’s neighbor -> int

val weight: ’s neighbor -> int

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 29 / 54 >

SASA

Algorithm Programming Interface (3/4)

Some of the topological information can be accessed:

val card: unit -> int

val links_number : unit -> int

val diameter: unit -> int

val min_degree : unit -> int

val mean_degree : unit -> float

val max_degree: unit -> int

val is_cyclic: unit -> bool

val is_connected : unit -> bool

val is_tree : unit -> bool

...

val get_graph_attribute : string -> string

37 straightforward loc

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 30 / 54 >

SASA

Algorithm Programming Interface (3/4)

Registration

type ’s algo_to_register = {

algo_id : string;

init_state: int -> ’s;

enab : ’s enable_fun;

step : ’s step_fun;

actions : action list option }

type ’s to_register = {

algo : ’s algo_to_register list;

state_to_string: ’s -> string;

state_of_string: (string -> ’s) option;

copy_state: ’s -> ’s }

val register : ’s to_register -> unit

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 31 / 54 >

SASA

The SASA Core Simulator Architecture

generates

loads

generatesreads

reads

ocaml

Network Topology

sasa Simulation Data

Dynamic LibraryAlgorithm
[bin]

[.dot file]

[.rif file]

[bin]

[.cmxs files]
[.ml files]

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 32 / 54 >

SASA

Dijkstra’s Token Ring For Root (1/2)

• Parameters:
◮ p.Pred : the

predecessor of p in the

ring
◮ K : a positive integer

• Local Variable:
◮ p.v ∈ {0, ...,K −1}

• Action:
◮ T :: p.v = p.Pred .v →֒

p.v ← (p.v +1)mod K

open Algo

let k = 42

let init_state _ = Random.int k

let enable_f e nl =

let pred = List.hd nl in

if e = state pred then ["T"] else []

let step_f e nl _ = (e + 1) mod k

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 33 / 54 >

SASA

Dijkstra’s Token Ring For each Non-Root (2/2)

• Parameters:

p.Pred : the predecessor of p

in the ring

K : a positive integer

• Local Variable:

p.v ∈ {0, ...,K −1}

• Action:

T :: p.v 6= p.Pred .v →֒ p.v ←
p.Pred .v

open Algo

let k = 42

let init_state _ = Random.int k

let enable_f e nl =

if e<>state (List.hd nl) then ["T"]

else []

let step_f e nl a = state (List.hd nl)

cd test/dijksra; rdbg -sut "sasa

ring.dot –distributed-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 34 / 54 >

SASA

Coloring Algo

• Parameters:
p.N : the set of p’s neighbors ;
K : an integer such that K ≥∆

• Local Variable:
p.c ∈ {0, ...,K} holds the color of p

• Macros:
Used(p) = {q.c : q ∈ p.N}
Free(p) = {0, ...,K}\Used(p)

• Predicate:
Conflict(p) = ∃q ∈ p.N : q.c = p.c

• Action:
Color :: Conflict(p)
→֒ p.c←min(Free(p))

open Algo

let k=3

let init_state _ = Random.int k

let neigbhors_vals nl = List.map (fun n -> state n) nl

let confl v nl = List.mem v (neigbhors_vals nl)

let free nl =

let confll = List.sort_uniq compare (neigbhors_vals nl) in

let rec aux free confl i =

if i > k then free else

(match confl with

| x::tail ->

if x=i then aux free tail (i+1)

else aux (i::free) confl (i+1)

| [] -> aux (i::free) confl (i+1)

)

in

List.rev (aux [] confll 0)

let enable_f e nl=if (confl e nl) then ["conflict"] else []

let step_f e nl a = if free nl = [] then e else List.hd f

let actions = Some ["conflict"]

cd test/coloring; rdbg -sut "sasa

grid4.dot –locally-central-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 35 / 54 >

Integration with Synchronous tools

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 36 / 54 >

Integration with Synchronous tools

Algorithms in the ASM viewed as Reactive programs

loop:

1. Reads neighbors vars

2. Computes pi_enab

3. Chooses pi_act (Daemon)

4. Computes states (pi_act)

loop:

• 4. Init -> Computes states (pi_act)

• 1. Reads neighbors vars

• 2. Computes pi_enab

• 3. Chooses pi_act (Daemon)

p1_act

p2_act

p3_act

p4_act

p5_act

p7_act

p6_act

p2_enab

p3_enab

p4_enab

p5_enab

p7_enab

p6_enab

p1_enab

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 37 / 54 >

Integration with Synchronous tools

The LURETTE dataflow

LUCIOLE

ENV SUT oracle

.rif

sim2chro

gnuplot−rif

PRE

Figure: The LURETTE dataflow schema

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 38 / 54 >

Integration with Synchronous tools

RDBG

LUCIOLE

ENV SUT oracle

.rif

sim2chro

gnuplot−rif

PRE

Figure: The RDBG dataflow schema

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 39 / 54 >

Integration with Synchronous tools

RDBG

LUCIOLE

ENV SUT oracle

.rif

sim2chro

gnuplot−rif

PRE

Figure: The RDBG dataflow schema

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 40 / 54 >

Integration with Synchronous tools

Lurette and Test Oracles

• All Book theorems formalized in Lustre

• Heavy use Lustre V6 genericity to write Topology Independant

Oracles

include "../lustre/oracle_utils.lus"

node theorem_5_18<<const an : int; const pn: int>> (Enab, Acti: bool^an^pn)

returns (res:bool);

var

Round:bool;

RoundNb:int;

Silent:bool;

let

Round = round <<an,pn>>(Enab,Acti);

RoundNb = count(Round);

Silent = silent<<an,pn>>(Enab);

res = (RoundNb >= diameter+2) => Silent ; -- from theorem 5.18 page 57

tel

node bfs_spanning_tree_oracle<<const an:int; const pn:int>> (Enab, Acti: bool^an^pn)

returns (ok:bool);

let

ok = lemma_5_16 <<an,pn>> (Enab, Acti) and theorem_5_18<<an,pn>> (Enab, Acti);

tel

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 41 / 54 >

Integration with Synchronous tools

Lurette and Lutin Environments

• Stochastic Reactive Language

• Designed to model Reactive Programs Environments

• Could be used to program custom Daemons with feedback
◮ To explore worst cases
◮ To simulate Algo that deals with Shared Resources

cd test/dijkstra; rdbg -env "sasa ring.dot –custom-demon"

-sut-nd "lutin ring.lut -n distributed"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 42 / 54 >

Integration with Synchronous tools

RDBG

Synchron’16 (scopes’17)

1. Debug Reactive programs

2. Plugin-based (instrumented runtime): Lustre, Lutin

3. Programmable
◮ run: unit -> Event.t
◮ next: Event.t -> Event.t

Move forward and Backwards (1 slide)

Conditional breakpoints (1 line)

gdb like Breakpoints (1 slide)

Profiling, monitoring, e.g. Computing CFG (~100 loc)

Opening an emacs at the current line (10 loc)

Debugger Customization

etc.

http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/rdbg/README.html

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 43 / 54 >

Integration with Synchronous tools

RDBG and SASA

LUCIOLE

ENV SUT oracle

.rif

sim2chro

gnuplot−rif

PRE

• One can only look at what happens at the interface

• Yet, at lot of thing can be done
◮ move forward or backward from step to step, or rounds to rounds

(40 loc)
◮ Display the graph decorated (200 loc)

with enabled/activated status

local state values

cd test/async-unison; rdbg -sut "sasa grid4.dot

–central-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 44 / 54 >

Performance Evaluation

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 45 / 54 >

Performance Evaluation

Performance Evaluation: Benchmarks Algorithms

We have implemented the following self-stabilizing algorithms:

• [ASY] solves unison in any network, under any daemon

• [SYN] solves the unison problem in any network, under a

synchronous daemon

• [DTR] solves the token circulation problem through a rooted

unidirected ring, under any daemon

• [BFS] builds a BFS spanning tree in any network using a

distributed daemon

• [DFS] builds a DFS spanning tree in any network using a d

istributed daemon

• [COL] solves the coloring algorithm in any network, under a locally

central daemon

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 46 / 54 >

Performance Evaluation

Performance Evaluation: Measurements

• 2 Square Grids
◮ grid.dot: 10 × 10 nodes, 180 links;
◮ biggrid.dot: 100 × 100 nodes, 19800 links;

• 2 Random Graphs built using the Erdös-Rényi model
◮ ER.dot: 256 nodes, 9811 links, average degree 76;
◮ bigER.dot: 2000 nodes, 600253 links, average degree 600.

grid.dot ER.dot biggrid.dot bigER.dot

Time/step Mem Time/step Mem Time/step Mem Time/step Mem

BFS 0.2 ms 13 MB 10.6 ms 49 MB 2.04 s 83 MB 3.03 s 1062 MB
DFS-l 1 ms 44 MB 144.7 ms 63 MB 2.57 s 92 MB 15.83 s 1062 MB
DFS-a 0.5 ms 39 MB 94.3 ms 170 MB 7.64 s 6642 MB 86.93 s 29945 MB
COL 0 ms 7 MB 35.8 ms 63 MB 27.93 s 75 MB 16.81 s 1083 MB
SYN 0.3 ms 38 MB 10.9 ms 63 MB 887.05 s 874 MB 13.58 s 1099 MB
ASY 0.1 ms 38 MB 4.5 ms 63 MB 0.03 s 83 MB 2.82 s 1115 MB

• Time/step = user+system time / | simulation steps |

• Mem = “Maximum resident set size” of GNU time

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 47 / 54 >

Some Design Choices

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 48 / 54 >

Some Design Choices

Polymorphic versus Variant Type

• An alternative to polymorphism to hold processes local state:

type value = I of int | F of float | B of Bool | A of state array | ...

type env = string -> value

But:

• What if one need a type that is not in this variant list?

• Variable values need to be set/get in/from the envt all the time.

let step_f c nl a = let step_f env nl a =

match a with match a with

| "I" -> modulo (c + 1) k | "I" ->

| "R" -> 0 let c_val = match env_get env "c" with

| I i -> i

| _ -> assert false

in

set_env env "c" (I(modulo ((c_val)+1) k))

| "R" -> set_env env "c" (I 0)

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 49 / 54 >

Some Design Choices

Dynamic versus Static Linking

generates

loads

generatesreads

reads

ocaml

Network Topology

sasa Simulation Data

Dynamic LibraryAlgorithm
[bin]

[.dot file]

[.rif file]

[bin]

[.cmxs files]
[.ml files]

• Dynamic Linking: Pros
◮ Easier to use
◮ Save Disk space
◮ Separation of concerns: user code only depends on a simple API

• Dynamic Linking: Cons
◮ Can not be combined gently with Polymorphic values!

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 50 / 54 >

Some Design Choices

Dynamic Type Checking of Polymorphic Nodes

• Dynamic linking in OCAML needs to be done via imperative tables
◮ The code to be linked registers functions into tables
◮ The main executable reads the tables of functions

• But storing polymorphic values into a mutable data-type is not

possible in ML-like languages; one can only store so-called

weakly polymorphic values!

• Weak variables can’t escape the scope of a compilation unit

https://ocamlverse.github.io/content/weak_type_variables.html

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 51 / 54 >

Some Design Choices

Dynamic Type Checking of Polymorphic Nodes

• Solution: use the (evil) Obj module:
◮ Obj.obj: ’a -> t: to register polymorphic functions into tables
◮ Obj.repr: t -> ’a: to retrieve them from the simulation engine

• Using Obj breaks type safety: how to prevent users to register

functions of different type?

By forcing all functions to be registrated at the same time:

type ’s algo_to_register = {

algo_id : string;

init_state: int -> ’s;

enab : ’s enable_fun;

step : ’s step_fun;

actions : action list option }

type ’s to_register = {

algo : ’s algo_to_register list; (* <==== ALL AlGO HAVE THE SAME TYPE! *)

state_to_string: ’s -> string;

state_of_string: (string -> ’s) option;

copy_state: ’s -> ’s }

val register : ’s to_register -> unit

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 52 / 54 >

Conclusion

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 53 / 54 >

Conclusion

Conclusion

• An open-source SimulAtor of Self-stabilizing Algorithms

• writen using the atomic-state model (the most commonly used in

Self-Stab)

• Rely on existing tools as much as possible
◮ dot for Graphs
◮ ocaml for programming local algorithms
◮ Synchrone (Verimag) Team Tools for simulation

• Installation via
◮ docker
◮ opam
◮ git

https://verimag.gricad-pages.univ-grenoble-alpes.fr/synchrone/sasa

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 54 / 54 >

Outline

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 2 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 3 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Distributed Systems Algorithms

• Process
◮ Autonomous
◮ Interconnected

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 4 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Distributed Systems Algorithms

• Process
◮ Autonomous
◮ Interconnected

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 4 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Distributed Systems Algorithms

• Process
◮ Autonomous
◮ Interconnected

• Hypotheses
◮ Connected
◮ Bidirectional
◮ Identified

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 4 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Distributed Systems Algorithms

• Process
◮ Autonomous
◮ Interconnected

• Hypotheses
◮ Connected
◮ Bidirectional
◮ Identified

• Expected Property
◮ Fault-tolerance

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 4 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Self-Stabilizing Algorithms

Configurations

Time

L
e
g
it
im

a
te

Il
le

g
it
im

a
te

Transient faults

Legitimate

configurations

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 5 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Self-Stabilizing Algorithms

Configurations

Time

L
e
g
it
im

a
te

Il
le

g
it
im

a
te

Transient faults

Legitimate

configurations

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 5 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Self-Stabilizing Algorithms

Configurations

Time

L
e
g
it
im

a
te

Il
le

g
it
im

a
te

Transient faults

Legitimate

configurations

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 5 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Self-Stabilizing Algorithms

Configurations

Time

L
e
g
it
im

a
te

Il
le

g
it
im

a
te

Stabilization time

Transient faults

Legitimate

configurations

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 5 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Atomic (Synchronous?) State Model
From a particular Configuration of local Memories

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 6 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Atomic (Synchronous?) State Model
Performing an Atomic Step consists in:

1. Reading neighbors variables

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 6 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Atomic (Synchronous?) State Model
Performing an Atomic Step consists in:

1. Reading neighbors variables

2. Computing enabled nodes

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 6 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Atomic (Synchronous?) State Model
Performing an Atomic Step consists in:

1. Reading neighbors variables

2. Computing enabled nodes

3. Choosing nodes to activate: a Daemon models the asynchronism

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 6 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Atomic (Synchronous?) State Model
Performing an Atomic Step consists in:

1. Reading neighbors variables

2. Computing enabled nodes

3. Choosing nodes to activate: a Daemon models the asynchronism

4. Computing a new configuration

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 6 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Goal: Study the Algorithm Complexity

• Space Complexity: memory requirement in bits

• Time Complexity (mainly stabilization time) in
◮ steps, moves
◮ rounds: capture the execution time of the slowest processes

1st round 2nd round

P
ro

c
e
s
s
e
s

Time

Key: Enabled Activated Neutralized

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 7 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Message Passing Versus Atomic State Models

• Message Passing Model (MPM)
◮ Used in the Distributed Algorithms community
◮ Lower-level: queues of events

• Atomic State Model (ASM):
◮ Used in the Self-Stabilizing Algorithms community
◮ Higher-level: atomic instantaneous communications
◮ General Algorithms transformations into MPM methods exist

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 8 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Some Classical Examples

• Dijkstra’s Token Ring

• Coloring Algo

• Synchronous Unison

• A-Synchronous Unison

• BFS spanning tree

• DFS spanning tree [Collin-Dolex-94]

"Introduction to Distributed Self-Stabilizing Algorithms" Altisen,

Devismes, Dubois, Petit 2019.

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 9 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Dijkstra’s Token Ring (1/2)

Get a unique Token that Circulates in rooted unidirected ring

For Root process

• Parameters:
◮ p.Pred : the predecessor of p in the ring
◮ K : a positive integer

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 10 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Dijkstra’s Token Ring (1/2)

Get a unique Token that Circulates in rooted unidirected ring

For Root process

• Parameters:
◮ p.Pred : the predecessor of p in the ring
◮ K : a positive integer

• Local Variable:
◮ p.v ∈ {0, ...,K −1}

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 10 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Dijkstra’s Token Ring (1/2)

Get a unique Token that Circulates in rooted unidirected ring

For Root process

• Parameters:
◮ p.Pred : the predecessor of p in the ring
◮ K : a positive integer

• Local Variable:
◮ p.v ∈ {0, ...,K −1}

• Action:
◮ T :: p.v = p.Pred .v →֒ p.v ← (p.v +1)mod K

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 10 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Dijkstra’s Token Ring (2/2)

For each Non-Root process

• Parameters:
◮ p.Pred : the predecessor of p in the ring
◮ K : a positive integer

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 11 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Dijkstra’s Token Ring (2/2)

For each Non-Root process

• Parameters:
◮ p.Pred : the predecessor of p in the ring
◮ K : a positive integer

• Local Variable:
◮ p.v ∈ {0, ...,K −1}

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 11 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Dijkstra’s Token Ring (2/2)

For each Non-Root process

• Parameters:
◮ p.Pred : the predecessor of p in the ring
◮ K : a positive integer

• Local Variable:
◮ p.v ∈ {0, ...,K −1}

• Action:
◮ T :: p.v 6= p.Pred .v →֒ p.v ← p.Pred .v

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 11 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Dijkstra’s Token Ring (2/2)

For each Non-Root process

• Parameters:
◮ p.Pred : the predecessor of p in the ring
◮ K : a positive integer

• Local Variable:
◮ p.v ∈ {0, ...,K −1}

• Action:
◮ T :: p.v 6= p.Pred .v →֒ p.v ← p.Pred .v

cd test/dijkstra; rdbg -sut "sasa ring.dot

–distributed-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 11 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Coloring Algo

For each process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ K : an integer such that K ≥∆

• Local Variable:
◮ p.c ∈ {0, ...,K} holds the color of p

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 12 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Coloring Algo

For each process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ K : an integer such that K ≥∆

• Local Variable:
◮ p.c ∈ {0, ...,K} holds the color of p

• Macros:
◮ Used(p) = {q.c : q ∈ p.N}
◮ Free(p) = {0, ...,K}\Used(p)

• Predicate:
◮ Conflict(p) = ∃q ∈ p.N : q.c = p.c

• Action:
◮ Color :: Conflict(p) →֒ p.c←min(Free(p))

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 12 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Coloring Algo

For each process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ K : an integer such that K ≥∆

• Local Variable:
◮ p.c ∈ {0, ...,K} holds the color of p

• Macros:
◮ Used(p) = {q.c : q ∈ p.N}
◮ Free(p) = {0, ...,K}\Used(p)

• Predicate:
◮ Conflict(p) = ∃q ∈ p.N : q.c = p.c

• Action:
◮ Color :: Conflict(p) →֒ p.c←min(Free(p))

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 12 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Coloring Algo

For each process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ K : an integer such that K ≥∆

• Local Variable:
◮ p.c ∈ {0, ...,K} holds the color of p

• Macros:
◮ Used(p) = {q.c : q ∈ p.N}
◮ Free(p) = {0, ...,K}\Used(p)

• Predicate:
◮ Conflict(p) = ∃q ∈ p.N : q.c = p.c

• Action:
◮ Color :: Conflict(p) →֒ p.c←min(Free(p))

cd test/coloring; rdbg -sut "sasa grid4.dot

–locally-central-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 12 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

Synchronous unison

For each process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ m : an integer such that m ≥max(2,2×D−1)

• Local Variable:
◮ p.c ∈ {0, ...,m−1} holds the clock of p

• Macro:
◮ NewClockValue(p) = (min({q.c : q ∈ p.N}∨{p.c})+1mod m

• Action:
◮ Incr :: p.c 6= NewClockValue(p) →֒ p.c← NewClockvalue(p)

cd test/unison; rdbg -sut "sasa ring.dot –synchronous-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 13 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

A-Synchronous Unison

For each process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ K : an integer such that K ≥ n2

• Local Variable:
◮ p.c ∈ {0, ...,K −1} holds the clock of p

• Predicate:
◮ behind(a,b) = ((b.c−a.c) mod K)≤ n

• Actions:
◮ I :: ∀q ∈ p.N,behind(p,q) →֒ p.c← (p.c+1) mod K
◮ R :: p.c 6= 0∧ (∃q ∈ p.N,¬behind(p,q)∧¬behind(q,p)) →֒ p.c← 0

cd test/async-unison; rdbg -sut "sasa ring.dot

–central-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 14 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

BFS Spanning tree (1/2)

For the Root process

• Parameters:
◮ root .N : the set of root’s neighbors
◮ D : an integer such that D ≥D

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 15 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

BFS Spanning tree (1/2)

For the Root process

• Parameters:
◮ root .N : the set of root’s neighbors
◮ D : an integer such that D ≥D

• Local Variable:
◮ root .d ∈ {0, ...,D} holds the distance to the root

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 15 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

BFS Spanning tree (1/2)

For the Root process

• Parameters:
◮ root .N : the set of root’s neighbors
◮ D : an integer such that D ≥D

• Local Variable:
◮ root .d ∈ {0, ...,D} holds the distance to the root

• Action:
◮ CD :: root .d 6= 0 →֒ root .d ← 0

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 15 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

BFS Spanning tree (2/2)

For each non-Root process p

• Parameters:
◮ p.N : the set of p’s neighbors
◮ D : an integer such that D ≥D

• Variables:
◮ p.d ∈ {0, ...,D} holds the distance to the root
◮ p.par ∈ p.N holds the parent pointer of p

• Macros:
◮ Dist(p) = min{q.d : q ∈ p.N}
◮ DistOK (p) = p.d −1 = min{q.d : q ∈ p.N}

• Actions:
◮ CD :: p.d 6= Dist(p) →֒ p.d ← Dist(p)
◮ CP ::

DistOK (p)∨p.par .d 6= p.d−1 →֒ p.par← q ∈ p :Ns.t .q(d)= p(d)−1

cd test/bfs; rdbg -sut "sasa fig51.dot –distributed-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 16 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

DFS Spanning Tree (1/2)

For the Root process

• Parameters:
◮ p.N : the set of root’s neighbors
◮ δ : a integer ≥ n

• Local Variable:
◮ p.path : an array integers of size δ

• Action:
◮ Path :: p.path 6= [] →֒ p.pathgets[]

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 17 / 54 >

Self-stabilizing Algorithms in the Atomic-State Model

DFS Spanning Tree (2/2)

For each Non-Root process

• Parameters:
◮ p.N : the set of process’s neighbors
◮ δ : a integer ≥ n

• Local Variables:
◮ p.par ∈ {0, ..., |p.N|−1} the parent of the process
◮ p.path : an array integers of size δ

• Macros:
◮ ComputePar(p.N) = [...]
◮ ComputePath(p.N) = [...]

• Actions:
◮ Par :: p.par 6= ComputePar(p.N) →֒ p.pargetsComputePar(p.N)
◮ Path ::

p.path 6= ComputePath(p.N) →֒ p.pathgetsComputePath(p.N)

cd test/dfs; rdbg -sut "sasa g.dot"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 18 / 54 >

Simulation of Self-stabilizing Algorithms

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 19 / 54 >

Simulation of Self-stabilizing Algorithms

Simulating Self-stabilizing Algorithms: What for?

• Debugging
◮ Simulate existing algorithms
◮ Design new algorithms

• Get Insights on the Algorithms Complexity
◮ Average case Complexity
◮ Check if the theoretical worst case is good/correct
◮ etc.

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 20 / 54 >

Simulation of Self-stabilizing Algorithms

Existing Simulators of Distributed Systems

• Most simulators work with the Message passing Model (MPM)

• Networking Simulators
◮ Architecture-*dependent*
◮ Measures Wall-clock simulation time

• Systematic Methods exist to translate ASM into MPM, but
◮ not the same level of abstractions: not good for debugging
◮ loose relation with the number of steps, moves, or rounds in the

ASM
◮ being lower-level, simulations can be very slow: restricted to small

topology and simple algorithms

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 21 / 54 >

Simulation of Self-stabilizing Algorithms

Simulators Dedicated to Self-Stabilization

A few Simulators Dedicated to Self-Stabilization exist but

• tailored to specific needs
◮ mutual exclusion
◮ leader election

• provides a few features
◮ work on Specific Topologies
◮ can check pre-defined properties only (e.g., convergence)
◮ small set of predefined Daemons
◮ complexity in steps only (no moves, no rounds)

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 22 / 54 >

Simulation of Self-stabilizing Algorithms

What is missing to the Self-Stabilizing community?

A Simulator able to:

• handle any algorithm written in the ASM
◮ simulation close to the model
◮ light-weight

• check any property, in terms of steps, moves, or rounds

• to define what the Legitimate Configurations are

• be used with any daemon

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 23 / 54 >

Simulation of Self-stabilizing Algorithms

What is missing to the Self-Stabilizing community?

A Simulator able to:

• handle any algorithm written in the ASM
◮ simulation close to the model
◮ light-weight

• check any property, in terms of steps, moves, or rounds

• to define what the Legitimate Configurations are

• be used with any daemon

Well. . . Not anymore!

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 23 / 54 >

SASA

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 24 / 54 >

SASA

SASA: main features

• Batch Simulations
◮ Debug Algorithms
◮ Perform simulation campaigns,

Study the influence of some parameters

Evaluate the (average-case) complexity Lower bounds

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 25 / 54 >

SASA

SASA: main features

• Batch Simulations
◮ Debug Algorithms
◮ Perform simulation campaigns,

Study the influence of some parameters

Evaluate the (average-case) complexity Lower bounds

• Test oracles to formalize expected properties

◮ involve the number of steps, moves, or rounds to reach a legitimate

configuration (differs from algorithms).

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 25 / 54 >

SASA

SASA: main features

• Batch Simulations
◮ Debug Algorithms
◮ Perform simulation campaigns,

Study the influence of some parameters

Evaluate the (average-case) complexity Lower bounds

• Test oracles to formalize expected properties

◮ involve the number of steps, moves, or rounds to reach a legitimate

configuration (differs from algorithms).

• Daemon can be configured
◮ Predefined: synchronous, central, locally central, or distributed
◮ Custom daemons: manual or programmed

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 25 / 54 >

SASA

SASA: main features

• Batch Simulations
◮ Debug Algorithms
◮ Perform simulation campaigns,

Study the influence of some parameters

Evaluate the (average-case) complexity Lower bounds

• Test oracles to formalize expected properties

◮ involve the number of steps, moves, or rounds to reach a legitimate

configuration (differs from algorithms).

• Daemon can be configured
◮ Predefined: synchronous, central, locally central, or distributed
◮ Custom daemons: manual or programmed

• Interactive Simulations
◮ step by step, or round by round, forward or backward
◮ while visualizing the network, the enabled, the activated actions
◮ New commands can also be programmed

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 25 / 54 >

SASA

Defining The Network Topology

• Take advantage of the GraphViz dot language
◮ Simple syntax
◮ Open-source
◮ Plenty of visualizers, editors, parsers, exporters

• dot attributes
◮ name-value pairs that can be ignored (pragmas)
◮ node attributes: algo, init
◮ graph attributes: global simulation parameters

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 26 / 54 >

SASA

A Topology Example: a 4x4 grid

graph g {

graph [n=24]

p0 [algo="p.ml" init="0"] p0 -- p1 -- p2 -- p3 -- p7

p1 [algo="p.ml" init="17"] p0 -- p4 -- p5 -- p6

p2 [algo="p.ml" init="18"] p11-- p15

p3 [algo="p.ml" init="19"] p1 -- p5 -- p9

p4 [algo="p.ml" init="17"] p10 -- p11 -- p7

p5 [algo="p.ml" init="18"] p10 -- p14 -- p15

p6 [algo="p.ml" init="19"] p10 -- p6

p7 [algo="p.ml" init="20"] p10 -- p9

p8 [algo="p.ml" init="18"] p12 -- p13 -- p14

p9 [algo="p.ml" init="19"] p12 -- p8 -- p9

p10 [algo="p.ml" init="20"] p13 -- p9

p11 [algo="p.ml" init="21"] p2 -- p6 -- p7

p12 [algo="p.ml" init="19"] p4 -- p8

p13 [algo="p.ml" init="20"] }

p14 [algo="p.ml" init="21"]

p15 [algo="p.ml" init="22"]

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 27 / 54 >

SASA

Algorithm Programming Interface

• 37 straightforward loc of Ocaml Interface (mli) file (162 with

comments)

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 28 / 54 >

SASA

Algorithm Programming Interface

• 37 straightforward loc of Ocaml Interface (mli) file (162 with

comments)
• Local states are polymorphic

type ’s neighbor

val state: ’s neighbor -> ’s

1. a list of action labels

type action = string

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 28 / 54 >

SASA

Algorithm Programming Interface

• 37 straightforward loc of Ocaml Interface (mli) file (162 with

comments)
• Local states are polymorphic

type ’s neighbor

val state: ’s neighbor -> ’s

• Users need to define 4 things:
1. a list of action labels

2. an enable function, which encodes the guards of the algorithm

type action = string

type ’s enable_fun = ’s -> ’s neighbor list -> action list

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 28 / 54 >

SASA

Algorithm Programming Interface

• 37 straightforward loc of Ocaml Interface (mli) file (162 with

comments)
• Local states are polymorphic

type ’s neighbor

val state: ’s neighbor -> ’s

• Users need to define 4 things:
1. a list of action labels

2. an enable function, which encodes the guards of the algorithm

3. a step function, that triggers enabled actions

type action = string

type ’s enable_fun = ’s -> ’s neighbor list -> action list

type ’s step_fun = ’s -> ’s neighbor list -> action -> ’s

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 28 / 54 >

SASA

Algorithm Programming Interface

• 37 straightforward loc of Ocaml Interface (mli) file (162 with

comments)
• Local states are polymorphic

type ’s neighbor

val state: ’s neighbor -> ’s

• Users need to define 4 things:
1. a list of action labels

2. an enable function, which encodes the guards of the algorithm

3. a step function, that triggers enabled actions

4. a state initialization function (used if not provided in the DOT file)

type action = string

type ’s enable_fun = ’s -> ’s neighbor list -> action list

type ’s step_fun = ’s -> ’s neighbor list -> action -> ’s

type ’s state_init_fun = int -> ’s

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 28 / 54 >

SASA

Algorithm Programming Interface

• 37 straightforward loc of Ocaml Interface (mli) file (162 with

comments)
• Local states are polymorphic

type ’s neighbor

val state: ’s neighbor -> ’s

• Users need to define 4 things:
1. a list of action labels

2. an enable function, which encodes the guards of the algorithm

3. a step function, that triggers enabled actions

4. a state initialization function (used if not provided in the DOT file)

type action = string

type ’s enable_fun = ’s -> ’s neighbor list -> action list

type ’s step_fun = ’s -> ’s neighbor list -> action -> ’s

type ’s state_init_fun = int -> ’s

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 28 / 54 >

SASA

Algorithm Programming Interface (2/4)

Each node can get (or not) information on its neighbors:

exception Not_available

val state : ’s neighbor -> ’s

val pid : ’s neighbor -> string

val spid : ’s neighbor -> string

val reply : ’s neighbor -> int

val weight: ’s neighbor -> int

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 29 / 54 >

SASA

Algorithm Programming Interface (3/4)

Some of the topological information can be accessed:

val card: unit -> int

val links_number : unit -> int

val diameter: unit -> int

val min_degree : unit -> int

val mean_degree : unit -> float

val max_degree: unit -> int

val is_cyclic: unit -> bool

val is_connected : unit -> bool

val is_tree : unit -> bool

...

val get_graph_attribute : string -> string

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 30 / 54 >

SASA

Algorithm Programming Interface (3/4)

Some of the topological information can be accessed:

val card: unit -> int

val links_number : unit -> int

val diameter: unit -> int

val min_degree : unit -> int

val mean_degree : unit -> float

val max_degree: unit -> int

val is_cyclic: unit -> bool

val is_connected : unit -> bool

val is_tree : unit -> bool

...

val get_graph_attribute : string -> string

37 straightforward loc

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 30 / 54 >

SASA

Algorithm Programming Interface (3/4)

Registration

type ’s algo_to_register = {

algo_id : string;

init_state: int -> ’s;

enab : ’s enable_fun;

step : ’s step_fun;

actions : action list option }

type ’s to_register = {

algo : ’s algo_to_register list;

state_to_string: ’s -> string;

state_of_string: (string -> ’s) option;

copy_state: ’s -> ’s }

val register : ’s to_register -> unit

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 31 / 54 >

SASA

The SASA Core Simulator Architecture

generates

loads

generatesreads

reads

ocaml

Network Topology

sasa Simulation Data

Dynamic LibraryAlgorithm
[bin]

[.dot file]

[.rif file]

[bin]

[.cmxs files]
[.ml files]

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 32 / 54 >

SASA

Dijkstra’s Token Ring For Root (1/2)

• Parameters:
◮ p.Pred : the

predecessor of p in the

ring
◮ K : a positive integer

• Local Variable:
◮ p.v ∈ {0, ...,K −1}

• Action:
◮ T :: p.v = p.Pred .v →֒

p.v ← (p.v +1)mod K

open Algo

let k = 42

let init_state _ = Random.int k

let enable_f e nl =

let pred = List.hd nl in

if e = state pred then ["T"] else []

let step_f e nl _ = (e + 1) mod k

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 33 / 54 >

SASA

Dijkstra’s Token Ring For each Non-Root (2/2)

• Parameters:

p.Pred : the predecessor of p

in the ring

K : a positive integer

• Local Variable:

p.v ∈ {0, ...,K −1}

• Action:

T :: p.v 6= p.Pred .v →֒ p.v ←
p.Pred .v

open Algo

let k = 42

let init_state _ = Random.int k

let enable_f e nl =

if e<>state (List.hd nl) then ["T"]

else []

let step_f e nl a = state (List.hd nl)

cd test/dijksra; rdbg -sut "sasa

ring.dot –distributed-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 34 / 54 >

SASA

Coloring Algo

• Parameters:
p.N : the set of p’s neighbors ;
K : an integer such that K ≥∆

• Local Variable:
p.c ∈ {0, ...,K} holds the color of p

• Macros:
Used(p) = {q.c : q ∈ p.N}
Free(p) = {0, ...,K}\Used(p)

• Predicate:
Conflict(p) = ∃q ∈ p.N : q.c = p.c

• Action:
Color :: Conflict(p)
→֒ p.c←min(Free(p))

open Algo

let k=3

let init_state _ = Random.int k

let neigbhors_vals nl = List.map (fun n -> state n) nl

let confl v nl = List.mem v (neigbhors_vals nl)

let free nl =

let confll = List.sort_uniq compare (neigbhors_vals nl) in

let rec aux free confl i =

if i > k then free else

(match confl with

| x::tail ->

if x=i then aux free tail (i+1)

else aux (i::free) confl (i+1)

| [] -> aux (i::free) confl (i+1)

)

in

List.rev (aux [] confll 0)

let enable_f e nl=if (confl e nl) then ["conflict"] else []

let step_f e nl a = if free nl = [] then e else List.hd f

let actions = Some ["conflict"]

cd test/coloring; rdbg -sut "sasa

grid4.dot –locally-central-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 35 / 54 >

Integration with Synchronous tools

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 36 / 54 >

Integration with Synchronous tools

Algorithms in the ASM viewed as Reactive programs

loop:

1. Reads neighbors vars

2. Computes pi_enab

3. Chooses pi_act (Daemon)

4. Computes states (pi_act)

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 37 / 54 >

Integration with Synchronous tools

Algorithms in the ASM viewed as Reactive programs

loop:

1. Reads neighbors vars

2. Computes pi_enab

3. Chooses pi_act (Daemon)

4. Computes states (pi_act)

loop:

• 4. Init -> Computes states (pi_act)

• 1. Reads neighbors vars

• 2. Computes pi_enab

• 3. Chooses pi_act (Daemon)

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 37 / 54 >

Integration with Synchronous tools

Algorithms in the ASM viewed as Reactive programs

loop:

1. Reads neighbors vars

2. Computes pi_enab

3. Chooses pi_act (Daemon)

4. Computes states (pi_act)

loop:

• 4. Init -> Computes states (pi_act)

• 1. Reads neighbors vars

• 2. Computes pi_enab

• 3. Chooses pi_act (Daemon)

p1_act

p2_act

p3_act

p4_act

p5_act

p7_act

p6_act

p2_enab

p3_enab

p4_enab

p5_enab

p7_enab

p6_enab

p1_enab

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 37 / 54 >

Integration with Synchronous tools

The LURETTE dataflow

LUCIOLE

ENV SUT oracle

.rif

sim2chro

gnuplot−rif

PRE

Figure: The LURETTE dataflow schema

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 38 / 54 >

Integration with Synchronous tools

RDBG

LUCIOLE

ENV SUT oracle

.rif

sim2chro

gnuplot−rif

PRE

Figure: The RDBG dataflow schema

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 39 / 54 >

Integration with Synchronous tools

RDBG

LUCIOLE

ENV SUT oracle

.rif

sim2chro

gnuplot−rif

PRE

Figure: The RDBG dataflow schema

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 40 / 54 >

Integration with Synchronous tools

Lurette and Test Oracles

• All Book theorems formalized in Lustre

• Heavy use Lustre V6 genericity to write Topology Independant

Oracles

include "../lustre/oracle_utils.lus"

node theorem_5_18<<const an : int; const pn: int>> (Enab, Acti: bool^an^pn)

returns (res:bool);

var

Round:bool;

RoundNb:int;

Silent:bool;

let

Round = round <<an,pn>>(Enab,Acti);

RoundNb = count(Round);

Silent = silent<<an,pn>>(Enab);

res = (RoundNb >= diameter+2) => Silent ; -- from theorem 5.18 page 57

tel

node bfs_spanning_tree_oracle<<const an:int; const pn:int>> (Enab, Acti: bool^an^pn)

returns (ok:bool);

let

ok = lemma_5_16 <<an,pn>> (Enab, Acti) and theorem_5_18<<an,pn>> (Enab, Acti);

tel

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 41 / 54 >

Integration with Synchronous tools

Lurette and Lutin Environments

• Stochastic Reactive Language

• Designed to model Reactive Programs Environments

• Could be used to program custom Daemons with feedback
◮ To explore worst cases
◮ To simulate Algo that deals with Shared Resources

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 42 / 54 >

Integration with Synchronous tools

Lurette and Lutin Environments

• Stochastic Reactive Language

• Designed to model Reactive Programs Environments

• Could be used to program custom Daemons with feedback
◮ To explore worst cases
◮ To simulate Algo that deals with Shared Resources

cd test/dijkstra; rdbg -env "sasa ring.dot –custom-demon"

-sut-nd "lutin ring.lut -n distributed"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 42 / 54 >

Integration with Synchronous tools

RDBG

Synchron’16 (scopes’17)

1. Debug Reactive programs

2. Plugin-based (instrumented runtime): Lustre, Lutin

3. Programmable
◮ run: unit -> Event.t
◮ next: Event.t -> Event.t

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 43 / 54 >

Integration with Synchronous tools

RDBG

Synchron’16 (scopes’17)

1. Debug Reactive programs

2. Plugin-based (instrumented runtime): Lustre, Lutin

3. Programmable
◮ run: unit -> Event.t
◮ next: Event.t -> Event.t

Move forward and Backwards (1 slide)

Conditional breakpoints (1 line)

gdb like Breakpoints (1 slide)

Profiling, monitoring, e.g. Computing CFG (~100 loc)

Opening an emacs at the current line (10 loc)

Debugger Customization

etc.

http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/rdbg/README.html

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 43 / 54 >

Integration with Synchronous tools

RDBG and SASA

LUCIOLE

ENV SUT oracle

.rif

sim2chro

gnuplot−rif

PRE

• One can only look at what happens at the interface

• Yet, at lot of thing can be done
◮ move forward or backward from step to step, or rounds to rounds

(40 loc)
◮ Display the graph decorated (200 loc)

with enabled/activated status

local state values

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 44 / 54 >

Integration with Synchronous tools

RDBG and SASA

LUCIOLE

ENV SUT oracle

.rif

sim2chro

gnuplot−rif

PRE

• One can only look at what happens at the interface

• Yet, at lot of thing can be done
◮ move forward or backward from step to step, or rounds to rounds

(40 loc)
◮ Display the graph decorated (200 loc)

with enabled/activated status

local state values

cd test/async-unison; rdbg -sut "sasa grid4.dot

–central-demon"

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 44 / 54 >

Performance Evaluation

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 45 / 54 >

Performance Evaluation

Performance Evaluation: Benchmarks Algorithms

We have implemented the following self-stabilizing algorithms:

• [ASY] solves unison in any network, under any daemon

• [SYN] solves the unison problem in any network, under a

synchronous daemon

• [DTR] solves the token circulation problem through a rooted

unidirected ring, under any daemon

• [BFS] builds a BFS spanning tree in any network using a

distributed daemon

• [DFS] builds a DFS spanning tree in any network using a d

istributed daemon

• [COL] solves the coloring algorithm in any network, under a locally

central daemon

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 46 / 54 >

Performance Evaluation

Performance Evaluation: Measurements

• 2 Square Grids
◮ grid.dot: 10 × 10 nodes, 180 links;
◮ biggrid.dot: 100 × 100 nodes, 19800 links;

• 2 Random Graphs built using the Erdös-Rényi model
◮ ER.dot: 256 nodes, 9811 links, average degree 76;
◮ bigER.dot: 2000 nodes, 600253 links, average degree 600.

grid.dot ER.dot biggrid.dot bigER.dot

Time/step Mem Time/step Mem Time/step Mem Time/step Mem

BFS 0.2 ms 13 MB 10.6 ms 49 MB 2.04 s 83 MB 3.03 s 1062 MB
DFS-l 1 ms 44 MB 144.7 ms 63 MB 2.57 s 92 MB 15.83 s 1062 MB
DFS-a 0.5 ms 39 MB 94.3 ms 170 MB 7.64 s 6642 MB 86.93 s 29945 MB
COL 0 ms 7 MB 35.8 ms 63 MB 27.93 s 75 MB 16.81 s 1083 MB
SYN 0.3 ms 38 MB 10.9 ms 63 MB 887.05 s 874 MB 13.58 s 1099 MB
ASY 0.1 ms 38 MB 4.5 ms 63 MB 0.03 s 83 MB 2.82 s 1115 MB

• Time/step = user+system time / | simulation steps |

• Mem = “Maximum resident set size” of GNU time

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 47 / 54 >

Some Design Choices

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 48 / 54 >

Some Design Choices

Polymorphic versus Variant Type

• An alternative to polymorphism to hold processes local state:

type value = I of int | F of float | B of Bool | A of state array | ...

type env = string -> value

But:

• What if one need a type that is not in this variant list?

• Variable values need to be set/get in/from the envt all the time.

let step_f c nl a = let step_f env nl a =

match a with match a with

| "I" -> modulo (c + 1) k | "I" ->

| "R" -> 0 let c_val = match env_get env "c" with

| I i -> i

| _ -> assert false

in

set_env env "c" (I(modulo ((c_val)+1) k))

| "R" -> set_env env "c" (I 0)

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 49 / 54 >

Some Design Choices

Dynamic versus Static Linking

generates

loads

generatesreads

reads

ocaml

Network Topology

sasa Simulation Data

Dynamic LibraryAlgorithm
[bin]

[.dot file]

[.rif file]

[bin]

[.cmxs files]
[.ml files]

• Dynamic Linking: Pros
◮ Easier to use
◮ Save Disk space
◮ Separation of concerns: user code only depends on a simple API

• Dynamic Linking: Cons
◮ Can not be combined gently with Polymorphic values!

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 50 / 54 >

Some Design Choices

Dynamic Type Checking of Polymorphic Nodes

• Dynamic linking in OCAML needs to be done via imperative tables
◮ The code to be linked registers functions into tables
◮ The main executable reads the tables of functions

• But storing polymorphic values into a mutable data-type is not

possible in ML-like languages; one can only store so-called

weakly polymorphic values!

• Weak variables can’t escape the scope of a compilation unit

https://ocamlverse.github.io/content/weak_type_variables.html

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 51 / 54 >

Some Design Choices

Dynamic Type Checking of Polymorphic Nodes

• Solution: use the (evil) Obj module:
◮ Obj.obj: ’a -> t: to register polymorphic functions into tables
◮ Obj.repr: t -> ’a: to retrieve them from the simulation engine

• Using Obj breaks type safety: how to prevent users to register

functions of different type?

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 52 / 54 >

Some Design Choices

Dynamic Type Checking of Polymorphic Nodes

• Solution: use the (evil) Obj module:
◮ Obj.obj: ’a -> t: to register polymorphic functions into tables
◮ Obj.repr: t -> ’a: to retrieve them from the simulation engine

• Using Obj breaks type safety: how to prevent users to register

functions of different type?

By forcing all functions to be registrated at the same time:

type ’s algo_to_register = {

algo_id : string;

init_state: int -> ’s;

enab : ’s enable_fun;

step : ’s step_fun;

actions : action list option }

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 52 / 54 >

Some Design Choices

Dynamic Type Checking of Polymorphic Nodes

• Solution: use the (evil) Obj module:
◮ Obj.obj: ’a -> t: to register polymorphic functions into tables
◮ Obj.repr: t -> ’a: to retrieve them from the simulation engine

• Using Obj breaks type safety: how to prevent users to register

functions of different type?

By forcing all functions to be registrated at the same time:

type ’s algo_to_register = {

algo_id : string;

init_state: int -> ’s;

enab : ’s enable_fun;

step : ’s step_fun;

actions : action list option }

type ’s to_register = {

algo : ’s algo_to_register list; (* <==== ALL AlGO HAVE THE SAME TYPE! *)

state_to_string: ’s -> string;

state_of_string: (string -> ’s) option;

copy_state: ’s -> ’s }

val register : ’s to_register -> unit

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 52 / 54 >

Conclusion

Plan

1 Self-stabilizing Algorithms in the Atomic-State Model

2 Simulation of Self-stabilizing Algorithms

3 SASA

4 Integration with Synchronous tools

5 Performance Evaluation

6 Some Design Choices

7 Conclusion

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 53 / 54 >

Conclusion

Conclusion

• An open-source SimulAtor of Self-stabilizing Algorithms

• writen using the atomic-state model (the most commonly used in

Self-Stab)

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 54 / 54 >

Conclusion

Conclusion

• An open-source SimulAtor of Self-stabilizing Algorithms

• writen using the atomic-state model (the most commonly used in

Self-Stab)

• Rely on existing tools as much as possible
◮ dot for Graphs
◮ ocaml for programming local algorithms
◮ Synchrone (Verimag) Team Tools for simulation

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 54 / 54 >

Conclusion

Conclusion

• An open-source SimulAtor of Self-stabilizing Algorithms

• writen using the atomic-state model (the most commonly used in

Self-Stab)

• Rely on existing tools as much as possible
◮ dot for Graphs
◮ ocaml for programming local algorithms
◮ Synchrone (Verimag) Team Tools for simulation

• Installation via
◮ docker
◮ opam
◮ git

https://verimag.gricad-pages.univ-grenoble-alpes.fr/synchrone/sasa

Erwan Jahier SASA a SimulAtor of Self-stabilizing Algorithms November 27, 2019 < 54 / 54 >

