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Problems I’ve Been Interested In

Type-checking generalized
guarded recursion

⇔
Deciding an extension of

Lambek calculus (NC ILL)
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Guarded Recursion in a Nutshell

The usual typing rule for recursive definitions:

Rec

Γ, x : A ⊢ t : A

Γ ⊢ rec (x : A).t : A

In its presence, every type A classifies partial terms, e.g., rec (x : A).x .
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A reasonably simple alternative is guarded recursion:

GuardedRec

Γ, x : ∗0 1 A ⊢ t : A
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Intuitively, this forces t’s output to be strictly more defined than x .
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Γ ⊢ rec (x : A).t : A

In its presence, every type A classifies partial terms, e.g., rec (x : A).x .

A reasonably simple alternative is guarded recursion:

GuardedRec

Γ, x : ∗0 1 A ⊢ t : A

Γ ⊢ rec (x : A).t : A

Intuitively, this forces t’s output to be strictly more defined than x .

This leads to a language with recursive types and a family of modalities ∗−

graded by time warps, with attenant term formers.

Adrien Guatto (IRIF & U. Paris 7) Programming with Time Warps SYNCHRON’19 3 / 19



Time Warps: Definition and Basic Structure

So-called “time warps” are generalized synchronous clocks.

Definition
A time warp p is a sup-preserving map from ω + 1 to itself, i.e., it is a monotonic
map such that:

p(0) = 0 and p(ω) =
∨

n<ω

p(n).
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map such that:

p(0) = 0 and p(ω) =
∨

n<ω

p(n).

Programming applications rely on the following structure:

the lattice structure obtained by ordering time warps pointwise,

the monoidal structure given by composition p ∗ q , q ◦ p,

the residuals ⊸ and › are right adjoints to composition.

q ≤ p ⊸ r ⇔ p ∗ q ≤ r ⇔ p ≤ r › q

Adrien Guatto (IRIF & U. Paris 7) Programming with Time Warps SYNCHRON’19 4 / 19



Time Warps: Definition and Basic Structure

So-called “time warps” are generalized synchronous clocks.

Definition
A time warp p is a sup-preserving map from ω + 1 to itself, i.e., it is a monotonic
map such that:

p(0) = 0 and p(ω) =
∨

n<ω

p(n).

Programming applications rely on the following structure:

the lattice structure obtained by ordering time warps pointwise,

the monoidal structure given by composition p ∗ q , q ◦ p,

the residuals ⊸ and › are right adjoints to composition.

q ≤ p ⊸ r ⇔ p ∗ q ≤ r ⇔ p ≤ r › q

More on this structure, and in particular residuals, later.
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Representing Time Warps as Eventually Periodic Sequences

1 = n 7→ n

1 2 3 4 5 6

1

2

3

4

5

6
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Programming with Time Warps: Main Aspects

Formal time warps P appear in gradings and denote time warps JPK.

P, Q, R := p | P ∗ Q | P ⊸ Q | P › Q | P ∧ Q | P ∨ Q

A := · · · | ∗P A
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Delays provide unbounded buffering.
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A := · · · | ∗P A

Delays provide unbounded buffering.

Delay

Γ ⊢ t : ∗Q A P ⊢ Q

Γ ⊢ delayP t : ∗P A

Rescaling by P lets a subterm run “P-times faster” than its context.

BadScale

Γ ⊢ t : A

∗P Γ ⊢ shutP t : ∗P A

(The above rule is not quite satisfactory but sufficient for this talk.)
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A := · · · | ∗P A

Delays provide unbounded buffering.

Delay

Γ ⊢ t : ∗Q A P ⊢ Q

Γ ⊢ delayP t : ∗P A

Rescaling by P lets a subterm run “P-times faster” than its context.

BadScale

Γ ⊢ t : A

∗P Γ ⊢ shutP t : ∗P A

(The above rule is not quite satisfactory but sufficient for this talk.)

The entailment P ⊢ Q stands for JPK ≤ JQK, which is easy to decide.
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Interlude: Residuals from a Programming Perspective

The universal property of residuals makes them useful when programming.

q ≤ p ⊸ r ⇔ p ∗ q ≤ r ⇔ p ≤ r › q

(The boxes below represent shutP (−) term formers.)
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Interlude: What About Left Adjoints To Composition?

What about left adjoints to pre/post-composition?

p \ r ≤ q ⇔ r ≤ p ∗ q ⇔ r/q ≤ p
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p \ r ≤ q ⇔ r ≤ p ∗ q ⇔ r/q ≤ p

p ∗p\r A

∗r A

r/q ∗q A

∗r A

Exercise: let’s try to find the values below.

1/2 = 1 0 0 1/0 1 = 0 2 1 2/1 = 2 1 0/1 0 = 1 0 2 1/0 = undef

1 \ 2 = 2 2 \ 1 = 0 1 0 1 \ 0 1 = 0 2 0 1 \ 1 = undef ω 0 \ 1 = undef

They are partial: r/q is defined when r(ω) ≤ q(ω), p \ r is more complicated.
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The Need for Time Warp Polymorphism

What type do we want for the function g? (Adapted from Gonthier.)

f : S B → S B

g , λx.(f (fst x), f (snd x))

f

f
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g , λx.(f (fst x), f (snd x))

f

f

g : ∀(X Y : warp).∗X (S B) × ∗Y (S B) → ∗X (S B) × ∗Y (S B)

This requires universal quantification over time warps.

A ::= · · · | ∗P A | ∀(X : warp).A

P, Q, R ::= X | p | P ∗ Q | P ⊸ Q | P › Q | P ∧ Q | P ∨ Q

How should P ⊢ Q be extended to deal with formal variables?
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Time Warp Entailment: Desiderata

Formal time warps now denote maps from ϕ ∈ Var → W to W.

JXKϕ = ϕ(X ) JpKϕ = p JP ∗ QKϕ = JPKϕ ∗ JQKϕ . . .
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JXKϕ = ϕ(X ) JpKϕ = p JP ∗ QKϕ = JPKϕ ∗ JQKϕ . . .

What should the entailment predicate P ⊢ Q look like?

It should (at least) be sound.

P ⊢ Q ⇒ ∀ϕ : Var → W, JPKϕ ≤ JQKϕ

It does not necessarily have to be complete.

∀ϕ : Var → W, JPKϕ ≤ JQKϕ

?
=⇒ P ⊢ Q

It should be decidable, perhaps defined as an inductive judgment?
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What should the entailment predicate P ⊢ Q look like?

It should (at least) be sound.

P ⊢ Q ⇒ ∀ϕ : Var → W, JPKϕ ≤ JQKϕ

It does not necessarily have to be complete.

∀ϕ : Var → W, JPKϕ ≤ JQKϕ

?
=⇒ P ⊢ Q

It should be decidable, perhaps defined as an inductive judgment?

I struggled for a while with ad-hoc proof rules, until. . .
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Heard on a Bus in Copenhagen, May 2019

Niccolò Veltri: “This seems related to Lambek calculus!”
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Residuated Lattices and Lambek Calculi
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Residuated Lattices and Lambek Calculi

After some reading, I learned how time warps:

form a bounded residuated lattice,

and thus model full Lambek calculus (FL).

FL is decidable, and its formulas belong to the following
subset of formal time warps:

P, Q, R ::= X | 0 | 1 | ω 0
| P ∗ Q | P ⊸ Q | P › Q

| P ∧ Q | P ∨ Q

All the connectives are there, but most time warps are
obviously missing. Can we add them while preserving
decidability?
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Full Lambek Calculus with Time Warps: Syntax

Formulas are formal time warps, contexts are lists of formulas.

P, Q, R ::= X | p | P ∗ Q | P ⊸ Q | P › Q | P ∧ Q | P ∨ Q

Θ ::= · | Θ, P

The decidable congruence ≡ captures equivalence of closed formulas.

X ≡ X p ∗ q ≡ p ∗ q p ⊸ q ≡ p ⊸ q
. . .

We extend it to contexts.

Θ ≡ Θ

Θ1 ≡ Θ2 Θ2 ≡ Θ3

Θ1 ≡ Θ3

P ≡ P ′

Θ1, P, Θ2 ≡ Θ1, P ′, Θ2

Θ1, p, q, Θ2 ≡ Θ1, p ∗ q, Θ2 Θ1, 1, Θ2 ≡ Θ1, Θ2
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Full Lambek Calculus: Existing Rules (1/2)

FL corresponds to non-commutative ILL with units.

Axiom

P ⊢ P

Cut

Θ2 ⊢ Q Θ1, Q, Θ3 ⊢ P

Θ1, Θ2, Θ3 ⊢ P

∗L

Θ1, P, Q, Θ2 ⊢ R

Θ1, P ∗ Q, Θ2 ⊢ R

∗R

Θ1 ⊢ P Θ2 ⊢ Q

Θ1, Θ2 ⊢ P ∗ Q

⊸L

Θ2 ⊢ P Θ1, Q, Θ3 ⊢ R

Θ1, Θ2, P ⊸ Q, Θ3 ⊢ R

⊸R

P, Θ ⊢ Q

Θ ⊢ P ⊸ Q

›L

Θ2 ⊢ P Θ1, Q, Θ3 ⊢ R

Θ1, Q › P, Θ2, Θ3 ⊢ R

›R

Θ, P ⊢ Q

Θ ⊢ Q › P
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Full Lambek Calculus: Existing Rules (2/2)

∧L1

Θ1, P, Θ2 ⊢ R

Θ1, P ∧ Q, Θ2 ⊢ R

∧L2

Θ1, Q, Θ2 ⊢ R

Θ1, P ∧ Q, Θ2 ⊢ R

∧R

Θ ⊢ P Θ ⊢ Q

Θ ⊢ P ∧ Q

∨L

Θ1, P, Θ2 ⊢ R Θ1, Q, Θ2 ⊢ R

Θ1, P ∨ Q, Θ2 ⊢ R

∨R1

Θ ⊢ P

Θ ⊢ P ∨ Q

∨R2

Θ ⊢ P

Θ ⊢ P ∨ Q

0L

Θ1, 0, Θ2 ⊢ P

ω 0R

Θ ⊢ ω 0

1L

Θ1, Θ2 ⊢ P

Θ1, 1, Θ2 ⊢ P

1R

· ⊢ 1
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Full Lambek Calculus: Adding General Time Warps

We want to enrich the preceding rules in order to:

include the ordering relation between time warps,

reason up to the equations coming from the model.

This leads to the following rules:

WeakWarp

p ≤ q Θ1, q, Θ2 ⊢ P

Θ1, p, Θ2 ⊢ P

EqL

Θ ≡ Θ′ Θ′ ⊢ P

Θ ⊢ P

EqR

P ≡ P ′ Θ ⊢ P ′

Θ ⊢ P

The decidability of FL follows from cut elimination and subformula property.
However, in the extended calculus:

cut elimination is not obvious, and

even if it held, the calculus does not enjoy the subformula property.

Adrien Guatto (IRIF & U. Paris 7) Programming with Time Warps SYNCHRON’19 16 / 19



Failure of the Subformula Property

All the following rules are derivable even in the absence of cut:

Θ1, 1, Θ2 ⊢ P

Θ1, Θ2 ⊢ P

Θ1, 2, 1 0, Θ2 ⊢ P

Θ1, Θ2 ⊢ P

Θ1, 2, 0 1, Θ2 ⊢ P

Θ1, Θ2 ⊢ P

Θ1, 3, 1 0 0, Θ2 ⊢ P

Θ1, Θ2 ⊢ P

Θ1, 3, 0 1 0, Θ2 ⊢ P

Θ1, Θ2 ⊢ P

Θ1, 3, 0 0 1, Θ2 ⊢ P

Θ1, Θ2 ⊢ P

. . .

An infinite number of instances of the EqL rule can always be applied.
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An Idea of the Difficulties

Why is the following sequent derivable?

X › 1 0, 2 ⊸ Y ⊢ X ∗ Y
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An Idea of the Difficulties

Why is the following sequent derivable?

X › 1 0, 2 ⊸ Y ⊢ X ∗ Y

The proof below is, I think, the only one up to nonessential differences.

1 ≤ 1 0 ∗ 2

1 0 ⊢ 1 0 X ⊢ X

X › 1 0, 1 0 ⊢ X

2 ⊢ 2 Y ⊢ Y

2, 2 ⊸ Y ⊢ Y

X › 1 0, 1 0, 2, 2 ⊸ Y ⊢ X ∗ Y

X › 1 0, 1 0 ∗ 2, 2 ⊸ Y ⊢ X ∗ Y

X › 1 0, 1 0 ∗ 2, 2 ⊸ Y ⊢ X ∗ Y

X › 1 0, 1, 2 ⊸ Y ⊢ X ∗ Y

X › 1 0, 2 ⊸ Y ⊢ X ∗ Y
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1 ≤ 1 0 ∗ 2

1 0 ⊢ 1 0 X ⊢ X

X › 1 0, 1 0 ⊢ X

2 ⊢ 2 Y ⊢ Y

2, 2 ⊸ Y ⊢ Y

X › 1 0, 1 0, 2, 2 ⊸ Y ⊢ X ∗ Y

X › 1 0, 1 0 ∗ 2, 2 ⊸ Y ⊢ X ∗ Y

X › 1 0, 1 0 ∗ 2, 2 ⊸ Y ⊢ X ∗ Y

X › 1 0, 1, 2 ⊸ Y ⊢ X ∗ Y

X › 1 0, 2 ⊸ Y ⊢ X ∗ Y

This seems discouraging: how do we know that 1 has to be split into 1 0 ∗ 2?
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Perspectives

Dear off-line readers. . .
. . . at this point the talk was cut short.

In this talk, I tried to make the following points:

time warps are a generalization of synchronous clocks that allow an arbitrary
countable number of activations (or data) per time step,

they form a model of Lambek calculus, a non-commutative and intuitionnistic
variant of linear logic originating from linguistics,

Lambek calculus can be extended to talk directly about concrete time warps by
adding them as atomic formulas related by axioms,

the decidability of this extension is an interesting and unsettled problem.
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