
IsamDAE: An implicit Structural Analysis tool

for multimode DAE systems

Benôıt Caillaud, Mathias Malandain, Joan Thibault

November 25th, 2019 - Aussois - Synchron’19 workshop

Multimode (aka. hybrid) systems

• Natural models for physical

phenomena

• mechanics (engagement/release of

links)

• thermodynamics (phase

(dis)appearance)

• hydraulics (opening/closing of a valve)

• electronics (switching diode/transistor)

• Fault modeling (component break)

• Reconfigurable systems ((dis)appearance

of components)

1

Multimode (aka. hybrid) systems

• Natural models for physical

phenomena

• mechanics (engagement/release of

links)

• thermodynamics (phase

(dis)appearance)

• hydraulics (opening/closing of a valve)

• electronics (switching diode/transistor)

• Fault modeling (component break)

• Reconfigurable systems ((dis)appearance

of components)

1

Multimode (aka. hybrid) systems

• Natural models for physical

phenomena

• mechanics (engagement/release of

links)

• thermodynamics (phase

(dis)appearance)

• hydraulics (opening/closing of a valve)

• electronics (switching diode/transistor)

• Fault modeling (component break)

• Reconfigurable systems ((dis)appearance

of components)

1

Multimode (aka. hybrid) systems

• Natural models for physical

phenomena

• mechanics (engagement/release of

links)

• thermodynamics (phase

(dis)appearance)

• hydraulics (opening/closing of a valve)

• electronics (switching diode/transistor)

• Fault modeling (component break)

• Reconfigurable systems ((dis)appearance

of components)

1

A sketch of Modelica and its semantics [Fritzson]

• Modelica = DAE + Objects

• Class = container for equations

2

A sketch of Modelica and its semantics [Fritzson]

• Modelica Reference v3.3:
“The semantics of the Modelica language is specified by means of a set

of rules for translating any class described in the Modelica language to a

flat Modelica structure”

• Pros:

• Semantics of continuous-time 1-mode Modelica models: Cauchy problem on the

DAE resulting from the inlining of all components

• DAE ⇒ modularity & reusability

• interconnecting components = algebraic constraints (6= ODE)

model SC2

 class M

 parameter Real S;

 parameter Real C;

 Real u,i;

 equation

 C*der(u) + S*u = i;

 end M;

 M m1(S=1e-6,C=1e-5);

 end M;

 M m1(S=1e-6,C=1e-5);

 M m2(S=2e-5,C=3e-5);

equation

 m1.u = m2.u;

 m1.i + m2.i = 0;

end SC2;
3

A sketch of Modelica and its semantics [Fritzson]

• Modelica supports multimode systems

x*x + y*y = 1;

der(x) + u = 0;

u = if x >= 0 then x+y else y;

when x <= 0 do reinit(x,1); end;

when y <= 0 do reinit(y,x); end;

• Cons:

• What about the semantics of multimode systems?

• Concept of solution incompletely defined

• and, unsurprisingly: Questionable simulations

3

Objectives and challenges

• Handling variable structure: Take into account the mode dependency of equations

and variables in multimode DAE (mDAE) systems

• Model representation: Represent structural information of multimode system in a

concise way (i.e., no mode enumeration)

• Implicit structural analysis and block-triangular decomposition: Adapt existing

algorithms so that they handle ”all modes at once” (i.e., modes are not

enumerated)

4

Objectives and challenges

• Handling variable structure: Take into account the mode dependency of equations

and variables in multimode DAE (mDAE) systems

• Model representation: Represent structural information of multimode system in a

concise way (i.e., no mode enumeration)

• Implicit structural analysis and block-triangular decomposition: Adapt existing

algorithms so that they handle ”all modes at once” (i.e., modes are not

enumerated)

4

Objectives and challenges

• Handling variable structure: Take into account the mode dependency of equations

and variables in multimode DAE (mDAE) systems

• Model representation: Represent structural information of multimode system in a

concise way (i.e., no mode enumeration)

• Implicit structural analysis and block-triangular decomposition: Adapt existing

algorithms so that they handle ”all modes at once” (i.e., modes are not

enumerated)

4

Objectives and challenges

• Handling variable structure: Take into account the mode dependency of equations

and variables in multimode DAE (mDAE) systems

• Model representation: Represent structural information of multimode system in a

concise way (i.e., no mode enumeration)

• Implicit structural analysis and block-triangular decomposition: Adapt existing

algorithms so that they handle ”all modes at once” (i.e., modes are not

enumerated)

To our knowledge, no similar works in the literature.

4

Analysis of a multimode DAE

• ”Solution” 1: “forget” about the

mode dependencies (approximate

structural analysis)

• ...possibly pivoting variables that

vanish in some modes

• Solution 2: enumerate all modes

(separate structural analyses)

• Patience is a virtue: 2 modes per

component ⇒ 1015 modes for a

50-component system

• Solution 3: structural analysis at

run-time

• No diagnosis at run-time, except

basic type-checking
5

Analysis of a multimode DAE

• ”Solution” 1: “forget” about the

mode dependencies (approximate

structural analysis)

• ...possibly pivoting variables that

vanish in some modes

• Solution 2: enumerate all modes

(separate structural analyses)

• Patience is a virtue: 2 modes per

component ⇒ 1015 modes for a

50-component system

• Solution 3: structural analysis at

run-time

• No diagnosis at run-time, except

basic type-checking

Singular inconsistent scalar sys-

tem for f1 = ((if g then w1-w2

else 0.0)) / (-(if g then 0.0 else

1.0)) = -0.502621/-0
5

Analysis of a multimode DAE

• ”Solution” 1: “forget” about the

mode dependencies (approximate

structural analysis)

• ...possibly pivoting variables that

vanish in some modes

• Solution 2: enumerate all modes

(separate structural analyses)

• Patience is a virtue: 2 modes per

component ⇒ 1015 modes for a

50-component system

• Solution 3: structural analysis at

run-time

• No diagnosis at run-time, except

basic type-checking
5

Analysis of a multimode DAE

• ”Solution” 1: “forget” about the

mode dependencies (approximate

structural analysis)

• ...possibly pivoting variables that

vanish in some modes

• Solution 2: enumerate all modes

(separate structural analyses)

• Patience is a virtue: 2 modes per

component ⇒ 1015 modes for a

50-component system

• Solution 3: structural analysis at

run-time

• No diagnosis at run-time, except

basic type-checking 5

Analysis of a multimode DAE

• ”Solution” 1: “forget” about the

mode dependencies (approximate

structural analysis)

• ...possibly pivoting variables that

vanish in some modes

• Solution 2: enumerate all modes

(separate structural analyses)

• Patience is a virtue: 2 modes per

component ⇒ 1015 modes for a

50-component system

• Solution 3: structural analysis at

run-time

• No diagnosis at run-time, except

basic type-checking
5

Analysis of a multimode DAE

• ”Solution” 1: “forget” about the

mode dependencies (approximate

structural analysis)

• ...possibly pivoting variables that

vanish in some modes

• Solution 2: enumerate all modes

(separate structural analyses)

• Patience is a virtue: 2 modes per

component ⇒ 1015 modes for a

50-component system

• Solution 3: structural analysis at

run-time

• No diagnosis at run-time, except

basic type-checking

• JIT compilation : index reduction,

Dulmage-Mendelsohn decomposition

and automatic differentiation

performed at run-time

• Modelyze [Broman], Modia

[Elmqvist]

5

Analysis of a multimode DAE

• ”Solution” 1: “forget” about the

mode dependencies (approximate

structural analysis)

• ...possibly pivoting variables that

vanish in some modes

• Solution 2: enumerate all modes

(separate structural analyses)

• Patience is a virtue: 2 modes per

component ⇒ 1015 modes for a

50-component system

• Solution 3: structural analysis at

run-time

• No diagnosis at run-time, except

basic type-checking

Our idea:

• Symbolic structural analysis ⇒

represent the structure of a mDAE

as functions M → N/B of the modes

5

Structural Analysis of DAE

DAE

General form: F (x , x ′, x ′′, . . . , t) = 0

• x = (x1, x2, . . . , xn) with xi = xi (t);

• F = {f1, f2, . . . , fn} set of n functions of t, and of xi and of finite number of their

derivatives.

Define σij the highest differentiation order of xj in equation fi . The leading variables of

F are x
(σj)
j with σj = maxi σij . If σj = 0, variable xj is said algebraic.

6

DAE

General form: F (x , x ′, x ′′, . . . , t) = 0

• x = (x1, x2, . . . , xn) with xi = xi (t);

• F = {f1, f2, . . . , fn} set of n functions of t, and of xi and of finite number of their

derivatives.

Define σij the highest differentiation order of xj in equation fi . The leading variables of

F are x
(σj)
j with σj = maxi σij . If σj = 0, variable xj is said algebraic.

6

DAE

General form: F (x , x ′, x ′′, . . . , t) = 0

• x = (x1, x2, . . . , xn) with xi = xi (t);

• F = {f1, f2, . . . , fn} set of n functions of t, and of xi and of finite number of their

derivatives.

Define σij the highest differentiation order of xj in equation fi . The leading variables of

F are x
(σj)
j with σj = maxi σij . If σj = 0, variable xj is said algebraic.

6

Example: a pendulum (Cartesian coordinates)

(S)







x ′′ + Tx = 0

y ′′ + Ty − g = 0

x2 + y2 − l2 = 0

T is an algebraic variable : (S) can not be solved like an ODE. The Jacobian matrix

wrt. (x ′′, y ′′,T) is:

J =






1 0 x

0 1 y

0 0 0






J is singular : the system can not be solved without some transformation.

7

Example: a pendulum (Cartesian coordinates)

(S)







x ′′ + Tx = 0

y ′′ + Ty − g = 0

x2 + y2 − l2 = 0

T is an algebraic variable : (S) can not be solved like an ODE. The Jacobian matrix

wrt. (x ′′, y ′′,T) is:

J =






1 0 x

0 1 y

0 0 0






J is singular : the system can not be solved without some transformation.

7

Example: a pendulum (Cartesian coordinates)

(S)







x ′′ + Tx = 0

y ′′ + Ty − g = 0

x2 + y2 − l2 = 0

T is an algebraic variable : (S) can not be solved like an ODE. The Jacobian matrix

wrt. (x ′′, y ′′,T) is:

J =






1 0 x

0 1 y

0 0 0






J is singular : the system can not be solved without some transformation.

7

Example: a pendulum (Cartesian coordinates)

However, if the third equation is differentiated twice:

(S ′)







x ′′ + Tx = 0

y ′′ + Ty − g = 0

2xx ′′ + 2(x ′)2 + 2yy ′′ + 2(y ′)2 = 0

; J ′ =






1 0 x

0 1 y

2x 2y 0






The Jacobian J ′ is invertible

How can one determine automatically which equations have to be differentiated, and

how many times?

8

Example: a pendulum (Cartesian coordinates)

However, if the third equation is differentiated twice:

(S ′)







x ′′ + Tx = 0

y ′′ + Ty − g = 0

2xx ′′ + 2(x ′)2 + 2yy ′′ + 2(y ′)2 = 0

; J ′ =






1 0 x

0 1 y

2x 2y 0






The Jacobian J ′ is invertible

How can one determine automatically which equations have to be differentiated, and

how many times?

8

Structural Analysis

Principles:

• structural invertibility of a matrix = almost certainly invertible when its non-zero

elements are random variables varying in a small neighborhood

• Checking structural invertibility ⇒ no determinant needs to be computed

• Retains useful information: which variables appear (with what differentiation
order) in which equation? (σij : highest differentiation order of xj in fi)

• Uses graph theoretic algorithms (eg. Pantelides method)

9

Structural Analysis

Principles:

• structural invertibility of a matrix = almost certainly invertible when its non-zero

elements are random variables varying in a small neighborhood

• Checking structural invertibility ⇒ no determinant needs to be computed

• Retains useful information: which variables appear (with what differentiation
order) in which equation? (σij : highest differentiation order of xj in fi)

• Uses graph theoretic algorithms (eg. Pantelides method)

9

Structural Analysis

Principles:

• structural invertibility of a matrix = almost certainly invertible when its non-zero

elements are random variables varying in a small neighborhood

• Checking structural invertibility ⇒ no determinant needs to be computed

• Retains useful information: which variables appear (with what differentiation
order) in which equation? (σij : highest differentiation order of xj in fi)

• Uses graph theoretic algorithms (eg. Pantelides method)

9

Structural Analysis

Principles:

• structural invertibility of a matrix = almost certainly invertible when its non-zero

elements are random variables varying in a small neighborhood

• Checking structural invertibility ⇒ no determinant needs to be computed

• Retains useful information: which variables appear (with what differentiation
order) in which equation? (σij : highest differentiation order of xj in fi)

• Uses graph theoretic algorithms (eg. Pantelides method)

9

Structural Analysis

Principles:

• structural invertibility of a matrix = almost certainly invertible when its non-zero

elements are random variables varying in a small neighborhood

• Checking structural invertibility ⇒ no determinant needs to be computed

• Retains useful information: which variables appear (with what differentiation
order) in which equation? (σij : highest differentiation order of xj in fi)

• Uses graph theoretic algorithms (eg. Pantelides method)

9

Highlights on several methods

• Structural analysis methods:

• Pantelides (1988)

• Weighed Bipartite Graph method [Ding et al. 2008]

• Σ-method [Pryce 2001]

• σ-ν method [Chowdhry et al. 2004]

• Several implementations (Modelica tools, Mathematica...)

10

Σ-matrix representation of the Pendulum







f1 = x ′′ − Tx

f2 = y ′′ − Ty + g

f3 = x2 + y2 − L2

11

Σ-matrix representation of the Pendulum







f1 = x ′′ − Tx

f2 = y ′′ − Ty + g

f3 = x2 + y2 − L2

Variable order:

X = (x , y ,T)

f1

f2

f3

x

y

T

11

Σ-matrix representation of the Pendulum







f1 = x ′′ − Tx

f2 = y ′′ − Ty + g

f3 = x2 + y2 − L2

Variable order:

X = (x , y ,T)

Σ =











f1

f2

f3

x

y

T

11

Σ-matrix representation of the Pendulum







f1 = x ′′ − Tx

f2 = y ′′ − Ty + g

f3 = x2 + y2 − L2

Variable order:

X = (x , y ,T)

Σ =






2 − 0





f1

f2

f3

x

y

T

2

0

11

Σ-matrix representation of the Pendulum







f1 = x ′′ − Tx

f2 = y ′′ − Ty + g

f3 = x2 + y2 − L2

Variable order:

X = (x , y ,T)

Σ =






2 − 0

− 2 0






f1

f2

f3

x

y

T

2

0

2

0

11

Σ-matrix representation of the Pendulum







f1 = x ′′ − Tx

f2 = y ′′ − Ty + g

f3 = x2 + y2 − L2

Variable order:

X = (x , y ,T)

Σ =






2 − 0

− 2 0

0 0 −






f1

f2

f3

x

y

T

2

0

2

0

0

0

11

The Σ-method

Compute the least diff. order ci of equation fi st. the Jacobian is

structurally invertible

Primal problem: compute a maximal weight transverse of Σ

Dual problem: Compute the minimal solution of the linear program

(Poff) : min ẑ =
∑

j

dj −
∑

i

ci

s.t. dj − ci ≥ σij ∀(i , j) ∈ S

ci ≥ 0 1 ≤ i ≤ n

with a fixed-point method using the maximal weight transverse

Result: • ci = number of times equations must be differentiated

• dj = differentiation order of the leading variables in the resulting

system
12

The Σ-method

Compute the least diff. order ci of equation fi st. the Jacobian is

structurally invertible

Primal problem: compute a maximal weight transverse of Σ

Dual problem: Compute the minimal solution of the linear program

(Poff) : min ẑ =
∑

j

dj −
∑

i

ci

s.t. dj − ci ≥ σij ∀(i , j) ∈ S

ci ≥ 0 1 ≤ i ≤ n

with a fixed-point method using the maximal weight transverse

Result: • ci = number of times equations must be differentiated

• dj = differentiation order of the leading variables in the resulting

system
12

The Σ-method

Compute the least diff. order ci of equation fi st. the Jacobian is

structurally invertible

Primal problem: compute a maximal weight transverse of Σ

Dual problem: Compute the minimal solution of the linear program

(Poff) : min ẑ =
∑

j

dj −
∑

i

ci

s.t. dj − ci ≥ σij ∀(i , j) ∈ S

ci ≥ 0 1 ≤ i ≤ n

with a fixed-point method using the maximal weight transverse

Result: • ci = number of times equations must be differentiated

• dj = differentiation order of the leading variables in the resulting

system
12

The Σ-method

Compute the least diff. order ci of equation fi st. the Jacobian is

structurally invertible

Primal problem: compute a maximal weight transverse of Σ

Dual problem: Compute the minimal solution of the linear program

(Poff) : min ẑ =
∑

j

dj −
∑

i

ci

s.t. dj − ci ≥ σij ∀(i , j) ∈ S

ci ≥ 0 1 ≤ i ≤ n

with a fixed-point method using the maximal weight transverse

Result: • ci = number of times equations must be differentiated

• dj = differentiation order of the leading variables in the resulting

system
12

Back to the Pendulum example

Σ =






2 − 0

− 2 0

0 0 −






f1

f2

f3

x

y

T

2

0

2

0

0

0

13

Back to the Pendulum example

A solution to the Primal problem:

Σ =






2 − 0

− 2 0

0 0 −






f1

f2

f3

x

y

T

2

0

2

0

0

0

13

Back to the Pendulum example

ci







0 2 0

0 2 0

0 0 0

︸ ︷︷ ︸

dj

f1

f2

f3

x

y

T

2

0

2

0

0

0

13

Back to the Pendulum example

ci







0 2 0

0 2 0

0 0 0

2

︸ ︷︷ ︸

dj

f1

f2

f3

x

y

T

2

0

2

0

0

0

13

Back to the Pendulum example

ci







0 2 0

0 2 0

0 0 0

2 2

︸ ︷︷ ︸

dj

f1

f2

f3

x

y

T

2

0

2

0

0

0

13

Back to the Pendulum example

ci







0 2 0

0 2 0

0 0 0

2 2 0

︸ ︷︷ ︸

dj

f1

f2

f3

x

y

T

2

0

2

0

0

0

13

Back to the Pendulum example

ci







0 2 0

0 2 0

2 0 0

2 2 0

︸ ︷︷ ︸

dj

f1

f2

f3

x

y

T

2

0

2

0

0

0

13

Back to the Pendulum example

ci







0 2 0

0 2 0

2 0 0

2 2 0

︸ ︷︷ ︸

dj

Fixed-point has been reached ⇒ the

solution has been computed

f1

f2

f3

x

y

T

2

0

2

0

0

0

13

The IsamDAE tool and the MEL

language

MEL: a toy mDAE modeling language

• MEL: ad hoc multimode DAE systems language

• Not using Modelica for several reasons:

• Modelica is an overly complex language

• Models with mode-dependent number of equations/variables

• Declaration of invariants, excluding some modes from the structural analysis

• More flexibility for future experiments & tests

14

MEL: a toy mDAE modeling language

• MEL: ad hoc multimode DAE systems language

• Not using Modelica for several reasons:

• Modelica is an overly complex language

• Models with mode-dependent number of equations/variables

• Declaration of invariants, excluding some modes from the structural analysis

• More flexibility for future experiments & tests

14

MEL: a toy mDAE modeling language

• MEL: ad hoc multimode DAE systems language

• Not using Modelica for several reasons:

• Modelica is an overly complex language

• Models with mode-dependent number of equations/variables

• Declaration of invariants, excluding some modes from the structural analysis

• More flexibility for future experiments & tests

• Boolean (mode) variables: predicates on real variables

g : boolean = x > 1.e-2

• Invariants are used to narrow the structural analysis to particular modes

invariant liq | gas

14

MEL: a toy mDAE modeling language

• MEL: ad hoc multimode DAE systems language

• Not using Modelica for several reasons:

• Modelica is an overly complex language

• Models with mode-dependent number of equations/variables

• Declaration of invariants, excluding some modes from the structural analysis

• More flexibility for future experiments & tests

• Boolean (mode) variables: predicates on real variables

g : boolean = x > 1.e-2

• Invariants are used to narrow the structural analysis to particular modes

invariant liq | gas

14

MEL: a toy mDAE modeling language

• MEL: ad hoc multimode DAE systems language

• Not using Modelica for several reasons:

• Modelica is an overly complex language

• Models with mode-dependent number of equations/variables

• Declaration of invariants, excluding some modes from the structural analysis

• More flexibility for future experiments & tests

• Both variables...

if !g then xf : real end

...and equations...

e1 : equation 0 = if g1 & !g2 then x else - y / 2.;

if g1 | g2 then e2t : equation 0 = x + y end;

...can be placed in or contain if ... then ... else ... statements

14

MEL: a toy mDAE modeling language

• MEL: ad hoc multimode DAE systems language

• Not using Modelica for several reasons:

• Modelica is an overly complex language

• Models with mode-dependent number of equations/variables

• Declaration of invariants, excluding some modes from the structural analysis

• More flexibility for future experiments & tests

• foreach loops and arrays, to define parametric models

foreach k in 1 .. n do

x[k] : real

done

• Also: parameters, uninterpreted nonlinear functions, when <event> then

<statements> end

14

MEL: a toy mDAE modeling language

• MEL: ad hoc multimode DAE systems language

• Not using Modelica for several reasons:

• Modelica is an overly complex language

• Models with mode-dependent number of equations/variables

• Declaration of invariants, excluding some modes from the structural analysis

• More flexibility for future experiments & tests

• foreach loops and arrays, to define parametric models

foreach k in 1 .. n do

x[k] : real

done

• Also: parameters, uninterpreted nonlinear functions, when <event> then

<statements> end

14

MEL: a toy mDAE modeling language

• MEL: ad hoc multimode DAE systems language

• Not using Modelica for several reasons:

• Modelica is an overly complex language

• Models with mode-dependent number of equations/variables

• Declaration of invariants, excluding some modes from the structural analysis

• More flexibility for future experiments & tests

• foreach loops and arrays, to define parametric models

foreach k in 1 .. n do

x[k] : real

done

• Also: parameters, uninterpreted nonlinear functions, when <event> then

<statements> end

14

Example: the RLDC2 circuit

• Provided by M. Otter and S. E.

Mattsson

• Simple model with 4 modes, 14

equations, 14 variables

• Currently not handled by Dymola &
OpenModelica:

Model error - division by zero

• Ideal diodes modeled as

complementarity conditions

i

−u

0 ≤ i ⊥ −u ≥ 0

15

Example: the RLDC2 circuit

• Provided by M. Otter and S. E.

Mattsson

• Simple model with 4 modes, 14

equations, 14 variables

• Currently not handled by Dymola &
OpenModelica:

Model error - division by zero

• Ideal diodes modeled as

complementarity conditions

i

−u

0 ≤ i ⊥ −u ≥ 0

15

Example: the RLDC2 circuit

• Provided by M. Otter and S. E.

Mattsson

• Simple model with 4 modes, 14

equations, 14 variables

• Currently not handled by Dymola &
OpenModelica:

Model error - division by zero

• Ideal diodes modeled as

complementarity conditions

i

−u

0 ≤ i ⊥ −u ≥ 0

15

Example: the RLDC2 circuit

// Kirchhoff laws

K1 : equation 0 = j1+i1+i2+j2;

K2 : equation x1+w1 = u1+v1;

K3 : equation u1+v1 = u2+v2;

K4 : equation u2+v2 = x2+w2;

// Resistors

R1 : equation x1 = R1*j1;

R2 : equation x2 = R2*j2;

// Inductors

L1 : equation w1 = L1*der(j1);

L2 : equation w2 = L2*der(j2);

// Capacitors

C1 : equation i1 = C1*der(v1);

C2 : equation i2 = C2*der(v2);

// Diode 1

// p1 holds iff left limit

// of s1 is non-negative

p1 : boolean = last(s1);

S1: equation s1 = if p1 then i1 else -u1;

Z1: equation 0 = if p1 then u1 else i1;

// Diode 2

// p2 holds iff left limit

// of s2 is non-negative

p2 : boolean = last(s2);

S2: equation s2 = if p2 then i2 else -u2;

Z2: equation 0 = if p2 then u2 else i2 16

Functional encoding of the structure

of a mDAE

Encoding a model (in a nutshell)

• Warning: In this talk we do not deal with mode changes. Assume that solutions

are continuous

• Everything is encoded as functions of the mode variables

• BDDs (Binary Decision Diagrams) are an appropriate framework:

• Compact and canonical representation of Boolean functions as DAGs

• Efficient computations on such functions

• Integer functions: variable-length little-endian binary encoding (list of BDDs)

• Negation ¬ and equality check in O(1), other operations include:

Conjunction/disjunction: ∧/∨

Existential quantification: ∃a. f (a, b)

Universal quantification: ∀a. f (a, b)

• However: very sensitive to variable and computation ordering

17

Encoding a model (in a nutshell)

• Warning: In this talk we do not deal with mode changes. Assume that solutions

are continuous

• Everything is encoded as functions of the mode variables

• BDDs (Binary Decision Diagrams) are an appropriate framework:

• Compact and canonical representation of Boolean functions as DAGs

• Efficient computations on such functions

• Integer functions: variable-length little-endian binary encoding (list of BDDs)

• Negation ¬ and equality check in O(1), other operations include:

Conjunction/disjunction: ∧/∨

Existential quantification: ∃a. f (a, b)

Universal quantification: ∀a. f (a, b)

• However: very sensitive to variable and computation ordering

17

Encoding a model (in a nutshell)

• Warning: In this talk we do not deal with mode changes. Assume that solutions

are continuous

• Everything is encoded as functions of the mode variables

• BDDs (Binary Decision Diagrams) are an appropriate framework:

• Compact and canonical representation of Boolean functions as DAGs

• Efficient computations on such functions

• Integer functions: variable-length little-endian binary encoding (list of BDDs)

• Negation ¬ and equality check in O(1), other operations include:

Conjunction/disjunction: ∧/∨

Existential quantification: ∃a. f (a, b)

Universal quantification: ∀a. f (a, b)

• However: very sensitive to variable and computation ordering

17

Encoding a model (in a nutshell)

• Warning: In this talk we do not deal with mode changes. Assume that solutions

are continuous

• Everything is encoded as functions of the mode variables

• BDDs (Binary Decision Diagrams) are an appropriate framework:

• Compact and canonical representation of Boolean functions as DAGs

• Efficient computations on such functions

• Integer functions: variable-length little-endian binary encoding (list of BDDs)

• Negation ¬ and equality check in O(1), other operations include:

Conjunction/disjunction: ∧/∨

Existential quantification: ∃a. f (a, b)

Universal quantification: ∀a. f (a, b)

• However: very sensitive to variable and computation ordering

17

Encoding a model (in a nutshell)

• Warning: In this talk we do not deal with mode changes. Assume that solutions

are continuous

• Everything is encoded as functions of the mode variables

• BDDs (Binary Decision Diagrams) are an appropriate framework:

• Compact and canonical representation of Boolean functions as DAGs

• Efficient computations on such functions

• Integer functions: variable-length little-endian binary encoding (list of BDDs)

• Negation ¬ and equality check in O(1), other operations include:

Conjunction/disjunction: ∧/∨

Existential quantification: ∃a. f (a, b)

Universal quantification: ∀a. f (a, b)

• However: very sensitive to variable and computation ordering

17

Structural Analysis

Pryce’s Σ-method (1/2)

Σ-matrix coefficients for a single-mode DAE:

f1(x1, x1
′, . . . , x1

(σ1,1), x2, x2
′, . . . , x2

(σ1,2), . . . , xn, xn
′, . . . , xn

(σ1,n)) = 0

f2(x1, x1
′, . . . , x1

(σ2,1), x2, x2
′, . . . , x2

(σ2,2), . . . , xn, xn
′, . . . , xn

(σ2,n)) = 0
...

fn(x1, x1
′, . . . , x1

(σn,1), x2, x2
′, . . . , x2

(σn,2), . . . , xn, xn
′, . . . , xn

(σn,n)) = 0

Convention: xj does not appear in fi ⇒ σi ,j = −∞

18

Pryce’s Σ-method (2/2)

John Pryce’s two-step structural analysis method:

• Primal problem: search for a HVT

(Highest-Value Transversal)

• it is a maximum-weight perfect

matching between the equations

and variables of the DAE

• Dual problem: find the solution

(c1, . . . , cn, d1, . . . , dn) of a Linear

Programming problem

• solved thanks to a fixpoint

iteration

Result: ”solve equations fi
(ci) for leading variables xj

(dj)”

+ HVT used for scheduling computations

19

Multimode structural analysis Σ-method (1/4)

Σ-matrix coefficients for a single-mode DAE:

f1(x1, x1
′, . . . , x1

(σ1,1,m), x2, x2
′, . . . , x2

(σ1,2,m), . . . , xn, xn
′, . . . , xn

(σ1,n,m)) = 0

f2(x1, x1
′, . . . , x1

(σ2,1,m), x2, x2
′, . . . , x2

(σ2,2,m), . . . , xn, xn
′, . . . , xn

(σ2,n,m)) = 0
...

fn(x1, x1
′, . . . , x1

(σn,1,m), x2, x2
′, . . . , x2

(σn,2,m), . . . , xn, xn
′, . . . , xn

(σn,n,m)) = 0

Convention: xj does not appear in fi in mode m implies σi ,j ,m = −∞

Auxiliary functions: χI : M × I → B, χJ : M × J → B and χE : M × E → B

characteristic functions of the set of active equations, variables and incidence edges

20

Multimode structural analysis (2/4)

The primal problem is solved in the following way:

• Encode constraints as functions M → B

• µ: ”an active equation must be matched to a variable”

• ν: ”...and vice-versa”

• Υ: ”an edge can only be part of a matching if it is active”

• X := Υ ∧ µ ∧ ν describes all perfect matchings in all modes

• Apply a (parametrized) ArgMax operator using edge weights

⇒ only keep maximum weight perfect matchings

21

Multimode structural analysis (2/4)

The primal problem is solved in the following way:

• Encode constraints as functions M → B

• µ: ”an active equation must be matched to a variable”

• ν: ”...and vice-versa”

• Υ: ”an edge can only be part of a matching if it is active”

• X := Υ ∧ µ ∧ ν describes all perfect matchings in all modes

• Apply a (parametrized) ArgMax operator using edge weights

⇒ only keep maximum weight perfect matchings

21

Multimode structural analysis (2/4)

The primal problem is solved in the following way:

• Encode constraints as functions M → B

• µ: ”an active equation must be matched to a variable”

• ν: ”...and vice-versa”

• Υ: ”an edge can only be part of a matching if it is active”

• X := Υ ∧ µ ∧ ν describes all perfect matchings in all modes

• Apply a (parametrized) ArgMax operator using edge weights

⇒ only keep maximum weight perfect matchings

21

Multimode structural analysis (2/4)

The primal problem is solved in the following way:

• Encode constraints as functions M → B

• µ: ”an active equation must be matched to a variable”

• ν: ”...and vice-versa”

• Υ: ”an edge can only be part of a matching if it is active”

• X := Υ ∧ µ ∧ ν describes all perfect matchings in all modes

• Apply a (parametrized) ArgMax operator using edge weights

⇒ only keep maximum weight perfect matchings

21

Parameterized argmax algorithm (3/4)

Problem:

Given ϕ and (wk)k=0...N−1, compute:

ψ = ArgMax ~V (w |ϕ) = {~x = (xv)v∈ ~V
|ϕ(~x) and w(~x) maximal}

Algorithm:

maxbk(γ) = γ ∧ (π ⇐⇒ wk) with:

π = ∃ ~V , γ ∧ wk

ψ = ψ0

ψk = maxbk(ψk+1) for all k < N

ψN = ϕ

22

Multimode structural analysis (4/4)

The dual problem is solved by ”parametrizing” everything

• Standard (single-mode) fixpoint iteration:

∀j , dj ← maxi (σij + ci)

∀i , ci ← dji − σi ,ji

with all ci ’s and dj ’s initialized to 0

• Parametrized (multimode) fixpoint iteration:

∀j , dj ≡ if χJ(j) then max
e=(i ,j)

{if χE (e) then σi ,j + ci else 0}

︸ ︷︷ ︸

M→N

else 0

∀i , ci ≡ if χI (i) then max
e=(i ,j)

{if (χJ(j) ∧ T (e)) then dj − σi ,j else ci}

︸ ︷︷ ︸

M→N

else 0

with all ci ’s and dj ’s initialized to zero functions
23

Multimode structural analysis (4/4)

The dual problem is solved by ”parametrizing” everything

• Standard (single-mode) fixpoint iteration:

∀j , dj ← maxi (σij + ci)

∀i , ci ← dji − σi ,ji

with all ci ’s and dj ’s initialized to 0

• Parametrized (multimode) fixpoint iteration:

∀j , dj ≡ if χJ(j) then max
e=(i ,j)

{if χE (e) then σi ,j + ci else 0}

︸ ︷︷ ︸

M→N

else 0

∀i , ci ≡ if χI (i) then max
e=(i ,j)

{if (χJ(j) ∧ T (e)) then dj − σi ,j else ci}

︸ ︷︷ ︸

M→N

else 0

with all ci ’s and dj ’s initialized to zero functions
23

Multimode structural analysis (4/4)

The dual problem is solved by ”parametrizing” everything

• Standard (single-mode) fixpoint iteration:

∀j , dj ← maxi (σij + ci)

∀i , ci ← dji − σi ,ji

with all ci ’s and dj ’s initialized to 0

• Parametrized (multimode) fixpoint iteration:

∀j , dj ≡ if χJ(j) then max
e=(i ,j)

{if χE (e) then σi ,j + ci else 0}

︸ ︷︷ ︸

M→N

else 0

∀i , ci ≡ if χI (i) then max
e=(i ,j)

{if (χJ(j) ∧ T (e)) then dj − σi ,j else ci}

︸ ︷︷ ︸

M→N

else 0

with all ci ’s and dj ’s initialized to zero functions
23

Our results

Good news: everything works as it should

• Same results in every mode as with standard structural analysis, but

way faster

• Detection and diagnosis of modes in which the system is structurally

singular (a list of equations and variables that cannot be consistently matched

is returned)

”Bad” news: everything works as it should...

• Numerical singularities are (by definition) unseen by structural

analysis

24

Our results

Good news: everything works as it should

• Same results in every mode as with standard structural analysis, but

way faster

• Detection and diagnosis of modes in which the system is structurally

singular (a list of equations and variables that cannot be consistently matched

is returned)

”Bad” news: everything works as it should...

• Numerical singularities are (by definition) unseen by structural

analysis

24

Our results

Good news: everything works as it should

• Same results in every mode as with standard structural analysis, but

way faster

• Detection and diagnosis of modes in which the system is structurally

singular (a list of equations and variables that cannot be consistently matched

is returned)

”Bad” news: everything works as it should...

• Numerical singularities are (by definition) unseen by structural

analysis

24

Our results

Good news: everything works as it should

• Same results in every mode as with standard structural analysis, but

way faster

• Detection and diagnosis of modes in which the system is structurally

singular (a list of equations and variables that cannot be consistently matched

is returned)

”Bad” news: everything works as it should...

• Numerical singularities are (by definition) unseen by structural

analysis

24

Our results

Good news: everything works as it should

• Same results in every mode as with standard structural analysis, but

way faster

• Detection and diagnosis of modes in which the system is structurally

singular (a list of equations and variables that cannot be consistently matched

is returned)

”Bad” news: everything works as it should...

• Numerical singularities are (by definition) unseen by structural

analysis

24

Dependencies and scheduling

Dependency graph

• (Single-mode) Dependency graph:

saturated edges are directed

• i j for an edge in the chosen

transversal

• j i for other edges

• Symbolic translation is quite

straightforward

f1

f2

f3

f4

x1

x2

x3

x4

25

Dependency graph

• (Single-mode) Dependency graph:

saturated edges are directed

• i j for an edge in the chosen

transversal

• j i for other edges

• Symbolic translation is quite

straightforward

f1

f2

f3

f4

x1

x2

x3

x4

25

Dependency graph

• (Single-mode) Dependency graph:

saturated edges are directed

• i j for an edge in the chosen

transversal

• j i for other edges

• Symbolic translation is quite

straightforward

f1

f2

f3

f4

x1

x2

x3

x4

25

Dependency graph

• (Single-mode) Dependency graph:

saturated edges are directed

• i j for an edge in the chosen

transversal

• j i for other edges

• Symbolic translation is quite

straightforward

f1

f2

f3

f4

x1

x2

x3

x4

25

Dependency graph

• (Single-mode) Dependency graph:

saturated edges are directed

• i j for an edge in the chosen

transversal

• j i for other edges

• Symbolic translation is quite

straightforward

f1

f2

f3

f4

x1

x2

x3

x4

25

Computing the SCCs

• Strongly Connected Components:

minimal blocks of equations for the

numerical solving

• Standard tool: Tarjan’s algorithm

• Not suited in multimode:

depth-first search approach can

require the enumeration of modes

f1

f2

f3

f4

x1

x2

x3

x4

26

Computing the SCCs

• Strongly Connected Components:

minimal blocks of equations for the

numerical solving

• Standard tool: Tarjan’s algorithm

• Not suited in multimode:

depth-first search approach can

require the enumeration of modes

f1

f2

f3

f4

x1

x2

x3

x4

26

Computing the SCCs

• Strongly Connected Components:

minimal blocks of equations for the

numerical solving

• Standard tool: Tarjan’s algorithm

• Not suited in multimode:

depth-first search approach can

require the enumeration of modes

f1

f2

f3

f4

x1

x2

x3

x4

26

Computing the SCCs

• Parametrizing the naive approach:

• Equation dependency graph:

(f g)⇔ (f x) ∧ (x g)

• Transitive closure:

(f g) ∧ (g h)⇒ (f h);

iterate until convergence

(pretty inexpensive with adapted data

structures)

• SCCs:

g ∈ SCC (f)⇔ (f g) ∧ (g f)

Equivalence relation, i.e., function

M × E × E → B

f1

f2

f3

f4

x1

x2

x3

x4

26

Computing the SCCs

• Parametrizing the naive approach:

• Equation dependency graph:

(f g)⇔ (f x) ∧ (x g)

• Transitive closure:

(f g) ∧ (g h)⇒ (f h);

iterate until convergence

(pretty inexpensive with adapted data

structures)

• SCCs:

g ∈ SCC (f)⇔ (f g) ∧ (g f)

Equivalence relation, i.e., function

M × E × E → B

f1 f2

f3 f4

26

Computing the SCCs

• Parametrizing the naive approach:

• Equation dependency graph:

(f g)⇔ (f x) ∧ (x g)

• Transitive closure:

(f g) ∧ (g h)⇒ (f h);

iterate until convergence

(pretty inexpensive with adapted data

structures)

• SCCs:

g ∈ SCC (f)⇔ (f g) ∧ (g f)

Equivalence relation, i.e., function

M × E × E → B

f1 f2

f3 f4

26

Computing the SCCs

• Parametrizing the naive approach:

• Equation dependency graph:

(f g)⇔ (f x) ∧ (x g)

• Transitive closure:

(f g) ∧ (g h)⇒ (f h);

iterate until convergence

(pretty inexpensive with adapted data

structures)

• SCCs:

g ∈ SCC (f)⇔ (f g) ∧ (g f)

Equivalence relation, i.e., function

M × E × E → B

f1 f2

f3 f4

26

Mode-dependent scheduling graph

• Several ”splitting” steps:

• Create the equation blocks (i.e., SCCs; implicitly declared until this step)

• Give each equation its differentiation order ci
• Look at the inputs and outputs of the block (essential for code generation)

• Not computationally expensive, actually:

• Blocks tend to be localized, i.e., a few mode variables are involved for each block

• Check the dependencies between the blocks

27

Mode-dependent scheduling graph

• Several ”splitting” steps:

• Create the equation blocks (i.e., SCCs; implicitly declared until this step)

• Give each equation its differentiation order ci
• Look at the inputs and outputs of the block (essential for code generation)

• Not computationally expensive, actually:

• Blocks tend to be localized, i.e., a few mode variables are involved for each block

• Check the dependencies between the blocks

27

Mode-dependent scheduling graph

• Several ”splitting” steps:

• Create the equation blocks (i.e., SCCs; implicitly declared until this step)

• Give each equation its differentiation order ci
• Look at the inputs and outputs of the block (essential for code generation)

• Not computationally expensive, actually:

• Blocks tend to be localized, i.e., a few mode variables are involved for each block

• Check the dependencies between the blocks

27

Mode-dependent scheduling graph

• Several ”splitting” steps:

• Create the equation blocks (i.e., SCCs; implicitly declared until this step)

• Give each equation its differentiation order ci
• Look at the inputs and outputs of the block (essential for code generation)

• Not computationally expensive, actually:

• Blocks tend to be localized, i.e., a few mode variables are involved for each block

• Check the dependencies between the blocks

27

Mode-dependent scheduling graph

• Several ”splitting” steps:

• Create the equation blocks (i.e., SCCs; implicitly declared until this step)

• Give each equation its differentiation order ci
• Look at the inputs and outputs of the block (essential for code generation)

• Not computationally expensive, actually:

• Blocks tend to be localized, i.e., a few mode variables are involved for each block

• Check the dependencies between the blocks

27

Mode-dependent scheduling graph

• Several ”splitting” steps:

• Create the equation blocks (i.e., SCCs; implicitly declared until this step)

• Give each equation its differentiation order ci
• Look at the inputs and outputs of the block (essential for code generation)

• Not computationally expensive, actually:

• Blocks tend to be localized, i.e., a few mode variables are involved for each block

• Check the dependencies between the blocks

27

The RLDC2 example

The RLDC2 example

• Conditional block dependency graph

• Strong mode dependency on equation

blocks and their structure

28

The RLDC2 example

• Conditional block dependency graph

• Strong mode dependency on equation

blocks and their structure

p1 & !p2: Z2
->
i2

!p1 | !p2: i2 ->
c2 -> v2'

p1 & !p2

p1 & !p2:
i2 j1 j2
-> K1

->
i1

p1 & !p2

!p1 & p2: Z2
->
u2

p1 | p2:
u2 v2 x2

-> K4
->
w2

!p1 & p2

!p1 & p2:
u2 v1 v2

-> K3
->
u1

!p1 & p2

!p1 & !p2: Z2'
->
i2'

!p1 & !p2:
i1' i2' v1
v2 x1 x2

->
K1' K2 K3

K4 l1 l2
->

w2 j1' u2
u1 w1 j2'

!p1 & !p2

p1 & p2: Z2'
->
u2'

p1 & p2:
j1 j2 u1'

u2'
->

K1 K3' c1
c2
->

v2' i1 v1'
i2

p1 & p2

p2: i2 ->
S2 -> s2

!p2: u2 ->
S2 -> s2

!p1 & p2: Z1
->
i1

!p1 | !p2: i1 ->
c1 -> v1'

!p1 & p2

!p1 & p2:
i1 j1 j2
-> K1

->
i2

!p1 & p2

p1 & !p2: Z1
->
u1

p1 & !p2:
u1 v1 v2

-> K3
->
u2

p1 & !p2

p1 | p2:
u1 v1 x1

-> K2
->
w1

p1 & !p2

!p1 & !p2: Z1'
->
i1'

!p1 & !p2

p1 & p2: Z1'
->
u1'

p1 & p2

p1: i1 ->
S1 -> s1

!p1: u1 ->
S1 -> s1

p1 | p2: w2 ->
l2 -> j2'

p1 | p2: w1 ->
l1 -> j1'

j2 ->
r2 -> x2

p1 | p2

!p1 & !p2

j1 ->
r1 -> x1 p1 | p2

!p1 & !p2

p1 | p2

!p1 & p2

!p1 & p2

p1 & !p2

p1 & !p2

p1 | p2

p1 & !p2

p1 & !p2

!p1 & p2

!p1 & p2

p1 & p2

p1 & p2

!p1 & !p2

!p1 & !p2

28

The RLDC2 example

• Conditional block dependency graph

• Strong mode dependency on equation

blocks and their structure

When both diodes are passing:

28

The RLDC2 example

• Conditional block dependency graph

• Strong mode dependency on equation

blocks and their structure

When both diodes are blocking:

28

The RLDC2 example

• Conditional block dependency graph

• Strong mode dependency on equation

blocks and their structure

When both diodes are blocking:

28

Executing the RLDC2 model (1/2)

S.V.

i1 i2 j1 j2 u1 u2 v1 v2

L.V.

i1 i2 j1 j2 s1 s2 u1 u2 v1 v2 w1 w2 x1 x2

• Fixed-size state vector with all

possible state variables

• maximal values of the dj ’s

throughout the modes are known

• Fixed-size leading variables vector:

one per variable

• actual dj implied (given by the block

dependency graph)

Here, simulation is performed on two threads with shared memory; no assumption

about a strategy for picking the next block to solve

29

Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V.

i1 i2 j1 j2 s1 s2 u1 u2 v1 v2 w1 w2 x1 x2

Thread 1:

Z ′

1 → u′1

Thread 2:

Z ′

2 → u′2

Z ′

1 → u′1 Z ′

2 → u′2

{C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

S1 → s1 S2 → s2

R1 → x1 K2 → w1 L1 → j ′1

R2 → x2 K4 → w2 L2 → j ′2
30

Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V. ⋆

i1 i2 j1 j2 s1 s2 u′1 u2 v1 v2 w1 w2 x1 x2

Thread 1:

Z ′

1 → u′1

Thread 2:

Z ′

2 → u′2

Z ′

1 → u′1 Z ′

2 → u′2

{C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

S1 → s1 S2 → s2

R1 → x1 K2 → w1 L1 → j ′1

R2 → x2 K4 → w2 L2 → j ′2
30

Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V. ⋆ ⋆

i1 i2 j1 j2 s1 s2 u′1 u′2 v1 v2 w1 w2 x1 x2

Thread 1:

j1 : R1 → x1

Thread 2:

Z ′

2 → u′2

Z ′

1 → u′1 Z ′

2 → u′2

{C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

S1 → s1 S2 → s2

R1 → x1 K2 → w1 L1 → j ′1

R2 → x2 K4 → w2 L2 → j ′2
30

Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V. ⋆ ⋆ ⋆

i1 i2 j1 j2 s1 s2 u′1 u′2 v1 v2 w1 w2 x1 x2

Thread 1:

j1 : R1 → x1

Thread 2:

j1, j2, u
′

1, u
′

2 : {C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

Z ′

1 → u′1 Z ′

2 → u′2

{C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

S1 → s1 S2 → s2

R1 → x1 K2 → w1 L1 → j ′1

R2 → x2 K4 → w2 L2 → j ′2
30

Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V. ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 s1 s2 u′1 u′2 v1 v2 w1 w2 x1 x2

Thread 1:

j2 : R2 → x2

Thread 2:

j1, j2, u
′

1, u
′

2 : {C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

Z ′

1 → u′1 Z ′

2 → u′2

{C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

S1 → s1 S2 → s2

R1 → x1 K2 → w1 L1 → j ′1

R2 → x2 K4 → w2 L2 → j ′2
30

Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V. ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 s1 s2 u′1 u′2 v1 v2 w1 w2 x1 x2

Thread 1:

u1, v1, x1 : K2 → w1

Thread 2:

j1, j2, u
′

1, u
′

2 : {C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

Z ′

1 → u′1 Z ′

2 → u′2

{C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

S1 → s1 S2 → s2

R1 → x1 K2 → w1 L1 → j ′1

R2 → x2 K4 → w2 L2 → j ′2
30

Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 s1 s2 u′1 u′2 v ′1 v ′2 w1 w2 x1 x2

Thread 1:

u2, v2, x2 : K4 → w2

Thread 2:

j1, j2, u
′

1, u
′

2 : {C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

Z ′

1 → u′1 Z ′

2 → u′2

{C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

S1 → s1 S2 → s2

R1 → x1 K2 → w1 L1 → j ′1

R2 → x2 K4 → w2 L2 → j ′2
30

Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 s1 s2 u′1 u′2 v ′1 v ′2 w1 w2 x1 x2

Thread 1:

u2, v2, x2 : K4 → w2

Thread 2:

w1 : L1 → j ′1

Z ′

1 → u′1 Z ′

2 → u′2

{C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

S1 → s1 S2 → s2

R1 → x1 K2 → w1 L1 → j ′1

R2 → x2 K4 → w2 L2 → j ′2
30

Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j ′1 j2 s1 s2 u′1 u′2 v ′1 v ′2 w1 w2 x1 x2

Thread 1:

w2 : L2 → j ′2

Thread 2:

w1 : L1 → j ′1

Z ′

1 → u′1 Z ′

2 → u′2

{C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

S1 → s1 S2 → s2

R1 → x1 K2 → w1 L1 → j ′1

R2 → x2 K4 → w2 L2 → j ′2
30

Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j ′1 j ′2 s1 s2 u′1 u′2 v ′1 v ′2 w1 w2 x1 x2

Thread 1:

w2 : L2 → j ′2

Thread 2:

i1 : S1 → s1

Z ′

1 → u′1 Z ′

2 → u′2

{C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

S1 → s1 S2 → s2

R1 → x1 K2 → w1 L1 → j ′1

R2 → x2 K4 → w2 L2 → j ′2
30

Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j ′1 j ′2 s1 s2 u′1 u′2 v ′1 v ′2 w1 w2 x1 x2

Thread 1:

i2 : S2 → s2

Thread 2:

i1 : S1 → s1

Z ′

1 → u′1 Z ′

2 → u′2

{C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

S1 → s1 S2 → s2

R1 → x1 K2 → w1 L1 → j ′1

R2 → x2 K4 → w2 L2 → j ′2
30

Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j ′1 j ′2 s1 s2 u′1 u′2 v ′1 v ′2 w1 w2 x1 x2

Thread 1:

i2 : S2 → s2

Thread 2:

Z ′

1 → u′1 Z ′

2 → u′2

{C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

S1 → s1 S2 → s2

R1 → x1 K2 → w1 L1 → j ′1

R2 → x2 K4 → w2 L2 → j ′2
30

Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j ′1 j ′2 s1 s2 u′1 u′2 v ′1 v ′2 w1 w2 x1 x2

Thread 1:

Thread 2:

Z ′

1 → u′1 Z ′

2 → u′2

{C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

S1 → s1 S2 → s2

R1 → x1 K2 → w1 L1 → j ′1

R2 → x2 K4 → w2 L2 → j ′2
30

Scalability

A thermal model of an office building

Two variants:

• Incompressible air: singular when all doors

closed and does not scale up

• Compressible air: scales up (number of blocks

linear in N)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

building_restrict

Blocks
Time (s)

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30

building_compressible

Blocks
Time (s)

31

Conclusion

Conclusion

Results:

• Structural analysis methods for multimode DAE systems

• Extending Pryce’s Σ-method

• Index reduction for all modes, with no mode enumeration

• Handles varying dimension, varying structure, varying index systems

• Software: IsamDAE https://allgo18.inria.fr/apps/isamdae

32

Conclusion

IsamDAE:

• Implementation in OCaml based on Arlen Cox’s MLBDD package

• Tested on moderately large models (103 equations, 280 modes)

• Please try the web version https://allgo18.inria.fr/apps/isamdae

• To do:

• Structural analysis of mode changes (strong assumption: logico-numerical fixed-point

equations are rejected, ie. requires infinitesimal delay between guard and equation)

• Detecting impulsive mode changes

• Interfacing with Dymola (collab. with Dassault Systèmes)

33

Conclusion

Open questions:

• Compositional structural analysis (divide and conquer approach) exploiting the

topology of the model

• Handling linear equations with integer coefficients (connectors, Kirchhoff

equations...)

• Understanding the relationship btw. mDAE and Complementarity Systems

(Christelle Kozaily’s PhD work)

34

Thank you

Questions?

	Structural Analysis of DAE
	The IsamDAE tool and the MEL language
	Functional encoding of the structure of a mDAE
	Structural Analysis
	Dependencies and scheduling
	The RLDC2 example
	Scalability
	Conclusion

