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Multimode (aka. hybrid) systems

• Natural models for physical

phenomena

• mechanics (engagement/release of

links)

• thermodynamics (phase

(dis)appearance)

• hydraulics (opening/closing of a valve)

• electronics (switching diode/transistor)

• Fault modeling (component break)

• Reconfigurable systems ((dis)appearance

of components)
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A sketch of Modelica and its semantics [Fritzson]

• Modelica = DAE + Objects

• Class = container for equations
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A sketch of Modelica and its semantics [Fritzson]

• Modelica Reference v3.3:
“The semantics of the Modelica language is specified by means of a set

of rules for translating any class described in the Modelica language to a

flat Modelica structure”

• Pros:

• Semantics of continuous-time 1-mode Modelica models: Cauchy problem on the

DAE resulting from the inlining of all components

• DAE ⇒ modularity & reusability

• interconnecting components = algebraic constraints ( 6= ODE)

model SC2

  class M

    parameter Real S;

    parameter Real C;

    Real u,i;

  equation

    C*der(u) + S*u = i;

  end M;

  M m1(S=1e-6,C=1e-5);

  end M;

  M m1(S=1e-6,C=1e-5);

  M m2(S=2e-5,C=3e-5);

equation

  m1.u = m2.u;

  m1.i + m2.i = 0;

end SC2;
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A sketch of Modelica and its semantics [Fritzson]

• Modelica supports multimode systems

x*x + y*y = 1;

der(x) + u = 0;

u = if x >= 0 then x+y else y;

when x <= 0 do reinit(x,1); end;

when y <= 0 do reinit(y,x); end;

• Cons:

• What about the semantics of multimode systems?

• Concept of solution incompletely defined

• and, unsurprisingly: Questionable simulations
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Objectives and challenges

• Handling variable structure: Take into account the mode dependency of equations

and variables in multimode DAE (mDAE) systems

• Model representation: Represent structural information of multimode system in a

concise way (i.e., no mode enumeration)

• Implicit structural analysis and block-triangular decomposition: Adapt existing

algorithms so that they handle ”all modes at once” (i.e., modes are not

enumerated)
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Objectives and challenges

• Handling variable structure: Take into account the mode dependency of equations

and variables in multimode DAE (mDAE) systems

• Model representation: Represent structural information of multimode system in a

concise way (i.e., no mode enumeration)

• Implicit structural analysis and block-triangular decomposition: Adapt existing

algorithms so that they handle ”all modes at once” (i.e., modes are not

enumerated)

To our knowledge, no similar works in the literature.
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Analysis of a multimode DAE

• ”Solution” 1: “forget” about the

mode dependencies (approximate

structural analysis)

• ...possibly pivoting variables that

vanish in some modes

• Solution 2: enumerate all modes

(separate structural analyses)

• Patience is a virtue: 2 modes per

component ⇒ 1015 modes for a

50-component system

• Solution 3: structural analysis at

run-time

• No diagnosis at run-time, except

basic type-checking
5
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• Patience is a virtue: 2 modes per

component ⇒ 1015 modes for a

50-component system

• Solution 3: structural analysis at

run-time

• No diagnosis at run-time, except

basic type-checking

Singular inconsistent scalar sys-

tem for f1 = ((if g then w1-w2

else 0.0)) / (-(if g then 0.0 else

1.0)) = -0.502621/-0
5



Analysis of a multimode DAE

• ”Solution” 1: “forget” about the

mode dependencies (approximate

structural analysis)

• ...possibly pivoting variables that

vanish in some modes

• Solution 2: enumerate all modes

(separate structural analyses)

• Patience is a virtue: 2 modes per

component ⇒ 1015 modes for a

50-component system

• Solution 3: structural analysis at

run-time

• No diagnosis at run-time, except

basic type-checking
5



Analysis of a multimode DAE

• ”Solution” 1: “forget” about the

mode dependencies (approximate

structural analysis)

• ...possibly pivoting variables that

vanish in some modes

• Solution 2: enumerate all modes

(separate structural analyses)

• Patience is a virtue: 2 modes per

component ⇒ 1015 modes for a

50-component system

• Solution 3: structural analysis at

run-time

• No diagnosis at run-time, except

basic type-checking 5



Analysis of a multimode DAE

• ”Solution” 1: “forget” about the

mode dependencies (approximate

structural analysis)

• ...possibly pivoting variables that

vanish in some modes

• Solution 2: enumerate all modes

(separate structural analyses)

• Patience is a virtue: 2 modes per

component ⇒ 1015 modes for a

50-component system

• Solution 3: structural analysis at

run-time

• No diagnosis at run-time, except

basic type-checking
5



Analysis of a multimode DAE

• ”Solution” 1: “forget” about the

mode dependencies (approximate

structural analysis)

• ...possibly pivoting variables that

vanish in some modes

• Solution 2: enumerate all modes

(separate structural analyses)

• Patience is a virtue: 2 modes per

component ⇒ 1015 modes for a

50-component system

• Solution 3: structural analysis at

run-time

• No diagnosis at run-time, except

basic type-checking

• JIT compilation : index reduction,

Dulmage-Mendelsohn decomposition

and automatic differentiation

performed at run-time

• Modelyze [Broman], Modia

[Elmqvist]
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Analysis of a multimode DAE

• ”Solution” 1: “forget” about the

mode dependencies (approximate

structural analysis)

• ...possibly pivoting variables that

vanish in some modes

• Solution 2: enumerate all modes

(separate structural analyses)

• Patience is a virtue: 2 modes per

component ⇒ 1015 modes for a

50-component system

• Solution 3: structural analysis at

run-time

• No diagnosis at run-time, except

basic type-checking

Our idea:

• Symbolic structural analysis ⇒

represent the structure of a mDAE

as functions M → N/B of the modes
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Structural Analysis of DAE



DAE

General form: F (x , x ′, x ′′, . . . , t) = 0

• x = (x1, x2, . . . , xn) with xi = xi (t);

• F = {f1, f2, . . . , fn} set of n functions of t, and of xi and of finite number of their

derivatives.

Define σij the highest differentiation order of xj in equation fi . The leading variables of

F are x
(σj )
j with σj = maxi σij . If σj = 0, variable xj is said algebraic.
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Example: a pendulum (Cartesian coordinates)

(S)







x ′′ + Tx = 0

y ′′ + Ty − g = 0

x2 + y2 − l2 = 0

T is an algebraic variable : (S) can not be solved like an ODE. The Jacobian matrix

wrt. (x ′′, y ′′,T ) is:

J =






1 0 x

0 1 y

0 0 0






J is singular : the system can not be solved without some transformation.
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Example: a pendulum (Cartesian coordinates)

However, if the third equation is differentiated twice:

(S ′)







x ′′ + Tx = 0

y ′′ + Ty − g = 0

2xx ′′ + 2(x ′)2 + 2yy ′′ + 2(y ′)2 = 0

; J ′ =






1 0 x

0 1 y

2x 2y 0






The Jacobian J ′ is invertible

How can one determine automatically which equations have to be differentiated, and

how many times?
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Structural Analysis

Principles:

• structural invertibility of a matrix = almost certainly invertible when its non-zero

elements are random variables varying in a small neighborhood

• Checking structural invertibility ⇒ no determinant needs to be computed

• Retains useful information: which variables appear (with what differentiation
order) in which equation? (σij : highest differentiation order of xj in fi )

• Uses graph theoretic algorithms (eg. Pantelides method)

9
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Highlights on several methods

• Structural analysis methods:

• Pantelides (1988)

• Weighed Bipartite Graph method [Ding et al. 2008]

• Σ-method [Pryce 2001]

• σ-ν method [Chowdhry et al. 2004]

• Several implementations (Modelica tools, Mathematica...)
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Σ-matrix representation of the Pendulum







f1 = x ′′ − Tx

f2 = y ′′ − Ty + g

f3 = x2 + y2 − L2
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The Σ-method

Compute the least diff. order ci of equation fi st. the Jacobian is

structurally invertible

Primal problem: compute a maximal weight transverse of Σ

Dual problem: Compute the minimal solution of the linear program

(Poff) : min ẑ =
∑

j

dj −
∑

i

ci

s.t. dj − ci ≥ σij ∀(i , j) ∈ S

ci ≥ 0 1 ≤ i ≤ n

with a fixed-point method using the maximal weight transverse

Result: • ci = number of times equations must be differentiated

• dj = differentiation order of the leading variables in the resulting

system
12
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Back to the Pendulum example

Σ =
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Back to the Pendulum example

A solution to the Primal problem:
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Back to the Pendulum example

ci







0 2 0

0 2 0

2 0 0

2 2 0

︸ ︷︷ ︸

dj

Fixed-point has been reached ⇒ the

solution has been computed

f1

f2

f3

x

y

T

2

0

2

0

0

0
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The IsamDAE tool and the MEL

language



MEL: a toy mDAE modeling language

• MEL: ad hoc multimode DAE systems language

• Not using Modelica for several reasons:

• Modelica is an overly complex language

• Models with mode-dependent number of equations/variables

• Declaration of invariants, excluding some modes from the structural analysis

• More flexibility for future experiments & tests

14



MEL: a toy mDAE modeling language

• MEL: ad hoc multimode DAE systems language

• Not using Modelica for several reasons:

• Modelica is an overly complex language

• Models with mode-dependent number of equations/variables

• Declaration of invariants, excluding some modes from the structural analysis

• More flexibility for future experiments & tests

14



MEL: a toy mDAE modeling language

• MEL: ad hoc multimode DAE systems language

• Not using Modelica for several reasons:

• Modelica is an overly complex language

• Models with mode-dependent number of equations/variables

• Declaration of invariants, excluding some modes from the structural analysis

• More flexibility for future experiments & tests

• Boolean (mode) variables: predicates on real variables

g : boolean = x > 1.e-2

• Invariants are used to narrow the structural analysis to particular modes

invariant liq | gas

14



MEL: a toy mDAE modeling language

• MEL: ad hoc multimode DAE systems language

• Not using Modelica for several reasons:

• Modelica is an overly complex language

• Models with mode-dependent number of equations/variables

• Declaration of invariants, excluding some modes from the structural analysis

• More flexibility for future experiments & tests

• Boolean (mode) variables: predicates on real variables

g : boolean = x > 1.e-2

• Invariants are used to narrow the structural analysis to particular modes

invariant liq | gas

14



MEL: a toy mDAE modeling language

• MEL: ad hoc multimode DAE systems language

• Not using Modelica for several reasons:

• Modelica is an overly complex language

• Models with mode-dependent number of equations/variables

• Declaration of invariants, excluding some modes from the structural analysis

• More flexibility for future experiments & tests

• Both variables...

if !g then xf : real end

...and equations...

e1 : equation 0 = if g1 & !g2 then x else - y / 2.;

if g1 | g2 then e2t : equation 0 = x + y end;

...can be placed in or contain if ... then ... else ... statements
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Example: the RLDC2 circuit

• Provided by M. Otter and S. E.

Mattsson

• Simple model with 4 modes, 14

equations, 14 variables

• Currently not handled by Dymola &
OpenModelica:

Model error - division by zero

• Ideal diodes modeled as

complementarity conditions

i

−u

0 ≤ i ⊥ −u ≥ 0
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Example: the RLDC2 circuit

// Kirchhoff laws

K1 : equation 0 = j1+i1+i2+j2;

K2 : equation x1+w1 = u1+v1;

K3 : equation u1+v1 = u2+v2;

K4 : equation u2+v2 = x2+w2;

// Resistors

R1 : equation x1 = R1*j1;

R2 : equation x2 = R2*j2;

// Inductors

L1 : equation w1 = L1*der(j1);

L2 : equation w2 = L2*der(j2);

// Capacitors

C1 : equation i1 = C1*der(v1);

C2 : equation i2 = C2*der(v2);

// Diode 1

// p1 holds iff left limit

// of s1 is non-negative

p1 : boolean = last(s1);

S1: equation s1 = if p1 then i1 else -u1;

Z1: equation 0 = if p1 then u1 else i1;

// Diode 2

// p2 holds iff left limit

// of s2 is non-negative

p2 : boolean = last(s2);

S2: equation s2 = if p2 then i2 else -u2;

Z2: equation 0 = if p2 then u2 else i2 16



Functional encoding of the structure

of a mDAE



Encoding a model (in a nutshell)

• Warning: In this talk we do not deal with mode changes. Assume that solutions

are continuous

• Everything is encoded as functions of the mode variables

• BDDs (Binary Decision Diagrams) are an appropriate framework:

• Compact and canonical representation of Boolean functions as DAGs

• Efficient computations on such functions

• Integer functions: variable-length little-endian binary encoding (list of BDDs)

• Negation ¬ and equality check in O(1), other operations include:

Conjunction/disjunction: ∧/∨

Existential quantification: ∃a. f (a, b)

Universal quantification: ∀a. f (a, b)

• However: very sensitive to variable and computation ordering
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Structural Analysis



Pryce’s Σ-method (1/2)

Σ-matrix coefficients for a single-mode DAE:

f1(x1, x1
′, . . . , x1

(σ1,1), x2, x2
′, . . . , x2

(σ1,2), . . . , xn, xn
′, . . . , xn

(σ1,n)) = 0

f2(x1, x1
′, . . . , x1

(σ2,1), x2, x2
′, . . . , x2

(σ2,2), . . . , xn, xn
′, . . . , xn

(σ2,n)) = 0
...

fn(x1, x1
′, . . . , x1

(σn,1), x2, x2
′, . . . , x2

(σn,2), . . . , xn, xn
′, . . . , xn

(σn,n)) = 0

Convention: xj does not appear in fi ⇒ σi ,j = −∞

18



Pryce’s Σ-method (2/2)

John Pryce’s two-step structural analysis method:

• Primal problem: search for a HVT

(Highest-Value Transversal)

• it is a maximum-weight perfect

matching between the equations

and variables of the DAE

• Dual problem: find the solution

(c1, . . . , cn, d1, . . . , dn) of a Linear

Programming problem

• solved thanks to a fixpoint

iteration

Result: ”solve equations fi
(ci ) for leading variables xj

(dj )”

+ HVT used for scheduling computations

19



Multimode structural analysis Σ-method (1/4)

Σ-matrix coefficients for a single-mode DAE:

f1(x1, x1
′, . . . , x1

(σ1,1,m), x2, x2
′, . . . , x2

(σ1,2,m), . . . , xn, xn
′, . . . , xn

(σ1,n,m)) = 0

f2(x1, x1
′, . . . , x1

(σ2,1,m), x2, x2
′, . . . , x2

(σ2,2,m), . . . , xn, xn
′, . . . , xn

(σ2,n,m)) = 0
...

fn(x1, x1
′, . . . , x1

(σn,1,m), x2, x2
′, . . . , x2

(σn,2,m), . . . , xn, xn
′, . . . , xn

(σn,n,m)) = 0

Convention: xj does not appear in fi in mode m implies σi ,j ,m = −∞

Auxiliary functions: χI : M × I → B, χJ : M × J → B and χE : M × E → B

characteristic functions of the set of active equations, variables and incidence edges

20



Multimode structural analysis (2/4)

The primal problem is solved in the following way:

• Encode constraints as functions M → B

• µ: ”an active equation must be matched to a variable”

• ν: ”...and vice-versa”

• Υ: ”an edge can only be part of a matching if it is active”

• X := Υ ∧ µ ∧ ν describes all perfect matchings in all modes

• Apply a (parametrized) ArgMax operator using edge weights

⇒ only keep maximum weight perfect matchings

21
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Parameterized argmax algorithm (3/4)

Problem:

Given ϕ and (wk)k=0...N−1, compute:

ψ = ArgMax ~V (w |ϕ) = {~x = (xv )v∈ ~V
|ϕ(~x) and w(~x) maximal}

Algorithm:

maxbk(γ) = γ ∧ (π ⇐⇒ wk ) with:

π = ∃ ~V , γ ∧ wk

ψ = ψ0

ψk = maxbk(ψk+1) for all k < N

ψN = ϕ

22



Multimode structural analysis (4/4)

The dual problem is solved by ”parametrizing” everything

• Standard (single-mode) fixpoint iteration:

∀j , dj ← maxi (σij + ci )

∀i , ci ← dji − σi ,ji

with all ci ’s and dj ’s initialized to 0

• Parametrized (multimode) fixpoint iteration:

∀j , dj ≡ if χJ(j) then max
e=(i ,j)

{if χE (e) then σi ,j + ci else 0}

︸ ︷︷ ︸

M→N

else 0

∀i , ci ≡ if χI (i) then max
e=(i ,j)

{if (χJ(j) ∧ T (e)) then dj − σi ,j else ci}

︸ ︷︷ ︸

M→N

else 0

with all ci ’s and dj ’s initialized to zero functions
23
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Our results

Good news: everything works as it should

• Same results in every mode as with standard structural analysis, but

way faster

• Detection and diagnosis of modes in which the system is structurally

singular (a list of equations and variables that cannot be consistently matched

is returned)

”Bad” news: everything works as it should...

• Numerical singularities are (by definition) unseen by structural

analysis

24
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Dependencies and scheduling



Dependency graph

• (Single-mode) Dependency graph:

saturated edges are directed

• i  j for an edge in the chosen

transversal

• j  i for other edges

• Symbolic translation is quite

straightforward

f1

f2

f3

f4

x1

x2

x3

x4
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Computing the SCCs

• Strongly Connected Components:

minimal blocks of equations for the

numerical solving

• Standard tool: Tarjan’s algorithm

• Not suited in multimode:

depth-first search approach can

require the enumeration of modes

f1

f2

f3

f4

x1

x2

x3

x4
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Computing the SCCs

• Parametrizing the naive approach:

• Equation dependency graph:

(f  g)⇔ (f  x) ∧ (x  g)

• Transitive closure:

(f  g) ∧ (g  h)⇒ (f  h);

iterate until convergence

(pretty inexpensive with adapted data

structures)

• SCCs:

g ∈ SCC (f )⇔ (f  g) ∧ (g  f )

Equivalence relation, i.e., function

M × E × E → B

f1

f2

f3

f4

x1

x2

x3

x4
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Mode-dependent scheduling graph

• Several ”splitting” steps:

• Create the equation blocks (i.e., SCCs; implicitly declared until this step)

• Give each equation its differentiation order ci
• Look at the inputs and outputs of the block (essential for code generation)

• Not computationally expensive, actually:

• Blocks tend to be localized, i.e., a few mode variables are involved for each block

• Check the dependencies between the blocks

27
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The RLDC2 example



The RLDC2 example

• Conditional block dependency graph

• Strong mode dependency on equation

blocks and their structure

28
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• Conditional block dependency graph

• Strong mode dependency on equation

blocks and their structure

p1 & !p2:  Z2
->
i2

!p1 | !p2: i2 ->
c2 -> v2'

p1 & !p2

p1 & !p2:
i2 j1 j2
-> K1

->
i1

p1 & !p2

!p1 & p2:  Z2
->
u2

p1 | p2:
u2 v2 x2

-> K4
->
w2

!p1 & p2
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u2 v1 v2

-> K3
->
u1

!p1 & p2

!p1 & !p2:  Z2'
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i2'
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v2 x1 x2
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K1' K2 K3

K4 l1 l2
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u1 w1 j2'
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j1 j2 u1'

u2'
->

K1 K3' c1
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The RLDC2 example

• Conditional block dependency graph

• Strong mode dependency on equation

blocks and their structure

When both diodes are passing:
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Executing the RLDC2 model (1/2)

S.V.

i1 i2 j1 j2 u1 u2 v1 v2

L.V.

i1 i2 j1 j2 s1 s2 u1 u2 v1 v2 w1 w2 x1 x2

• Fixed-size state vector with all

possible state variables

• maximal values of the dj ’s

throughout the modes are known

• Fixed-size leading variables vector:

one per variable

• actual dj implied (given by the block

dependency graph)

Here, simulation is performed on two threads with shared memory; no assumption

about a strategy for picking the next block to solve

29



Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V.

i1 i2 j1 j2 s1 s2 u1 u2 v1 v2 w1 w2 x1 x2

Thread 1:

Z ′

1 → u′1

Thread 2:

Z ′

2 → u′2

Z ′

1 → u′1 Z ′

2 → u′2

{C1,C2,K1,K
′

3} → {i1, i2, v
′

1, v
′

2}

S1 → s1 S2 → s2

R1 → x1 K2 → w1 L1 → j ′1

R2 → x2 K4 → w2 L2 → j ′2
30



Executing the RLDC2 model (2/2)

S.V. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

i1 i2 j1 j2 u1 u2 v1 v2

L.V. ⋆

i1 i2 j1 j2 s1 s2 u′1 u2 v1 v2 w1 w2 x1 x2

Thread 1:
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A thermal model of an office building

Two variants:

• Incompressible air: singular when all doors

closed and does not scale up

• Compressible air: scales up (number of blocks

linear in N)
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Conclusion

Results:

• Structural analysis methods for multimode DAE systems

• Extending Pryce’s Σ-method

• Index reduction for all modes, with no mode enumeration

• Handles varying dimension, varying structure, varying index systems

• Software: IsamDAE https://allgo18.inria.fr/apps/isamdae
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Conclusion

IsamDAE:

• Implementation in OCaml based on Arlen Cox’s MLBDD package

• Tested on moderately large models (103 equations, 280 modes)

• Please try the web version https://allgo18.inria.fr/apps/isamdae

• To do:

• Structural analysis of mode changes (strong assumption: logico-numerical fixed-point

equations are rejected, ie. requires infinitesimal delay between guard and equation)

• Detecting impulsive mode changes

• Interfacing with Dymola (collab. with Dassault Systèmes)
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Conclusion

Open questions:

• Compositional structural analysis (divide and conquer approach) exploiting the

topology of the model

• Handling linear equations with integer coefficients (connectors, Kirchhoff

equations...)

• Understanding the relationship btw. mDAE and Complementarity Systems

(Christelle Kozaily’s PhD work)
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Thank you

Questions?
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