Reactive Probabillistic
Programming

Guillaume Baudart, Marc Pouzet Eric Atkinson,
Louis Mandel Benjamin Sherman,
Michael Carbin






Probabllistic Programming



Probabllistic Programming

Programming and reasoning with uncertainty
Program functions with uncertainty: sample from distributions
Condition on observed data: inputs of the model

Probabilistic Programming Languages
Bugs, Stan, Church, Blog, Anglican, Venture, Figaro, WebPL, Pyro, Edward, ...

Probabilistic constructs:
x = sample(d): introduce a random variable x of distribution d

observe(d, y): measure the likelihood of an observation y w.r.t d
infer m obs: compute output distribution of a model m given obs

Inference: compute probability distribution defined by a model given observations
or data (similar to learning in machine learning)



ProbZelus: Design Choices

Zelus extended with probabilistic constructs

Inference in the loop
Interaction between deterministic processes and probabilistic models
Models receives input from the environment
Deterministic processes can access intermediate results
Feedback between inferred distribution and deterministic processes

Streaming inference
Inference runs in parallel with deterministic processes (non-terminating)
Should run with bounded ressources
Multiples inference algorithms with different trade-off cost/accuracy
Sequential Monte-Carlo (SMC) vs. streaming delayed sampling



Bayesian Inference (in-the-loop)

Learn parameters from data
Latent parameters at instant t 6,
Observed data x1,...T¢

Compute the distribution p(0; | x1,...x;) at each time step

p(0)p(x1, ...,z | O)

(Bayes' theorem)
p(xla .o 73715)

p(0; | x1,...2¢) =



Bayesian Inference (in-the-loop)

Learn parameters from data
Latent parameters at instant t 6,
Observed data x1,...T¢

Compute the distribution p(0; | x1,...x;) at each time step

p(Os)p(x1,. .. x4 | Of)
p(xla )
x p(0y)p(z1,...,24 | 0;) (Dataare constants)

p(0; | x1,...24) = (Bayes' theorem)



Bayesian Inference (in-the-loop)

Learn parameters from data
Latent parameters at instant t 6,
Observed data x1,...T¢

Compute the distribution p(6¢ | x1,...x¢) at each time step

p(Os)p(x1,. .. x4 | Of)
p(xla )
( )p(xl, , Lt \ Ht) (Data are constants)

(Bayes' theorem)

p(0; | x1,...2¢) =

prior: sample likelihood: observe



Example



Robot Controller

Input: noisy acceleration acc (at each step), noisy position gps (sporadic)
Output: command u to drive the robot to a given target

State: xt = (position, velocity, acceleration)
Motion model: xt+1 = A.xt + B.ut (A, B are constant matrices)

robot

acc > lgr a b

9ps \ infer

tracker

X_dist




Robot Controller

Input: noisy acceleration acc (at each step), noisy position gps (sporadic)
Output: command u to drive the robot to a given target

State: xt = (position, velocity, acceleration)
Motion model: xt+1 = A.xt + B.ut (A, B are constant matrices)

robot

acc — lgr a b |

let node robot (acc, gps) = u where
rec x dist = infer tracker (u, acc, gps)
and u = u0 -> Igr a b (mean (pre x_dist))

-

gps

, tracker
X_dist




Robot Controller

-0

let proba kalman (u, acc, gps) = x where
rec mu = x0 -> (a *@ pre x) +0@ (b *@ u)
and x = sample (mv_gaussian (mu, noise))
and () = observe (gaussian (vec get x 2, 1.0), acc)
and present gps (pos) ->
do () = observe (gaussian (vec get x 0, 0.01), pos) done

let node robot (acc, gps) = u where
rec x dist = infer 100 tracker (u, acc, gps)
and u = u0 -> Igr a b (mean (pre x_dist))



Robot Controller

50 \ T T T T T I I I
a0 |
30 ;
of Position
10 ; :
Aw B e
[ 1 W 1 l 1 1 1 l 1 1 1 1 1 1 i
0 100 200 300 400
[\ — T T T T T
O i ,\\ I\ e Mo k A,
L,r' DT | Vot
-10
Acceleration
_20 |
-30 ﬂ
| | | |
0 100 200 300 400

I I T T I I
2000 t+ —
1500 [+ —
| [ QR loss
1000 |+
500
0 [ 1 I 1 I I 1 I
0 100 200 300 400

- exact value
- estimated value
- gps readings

10



. anguage



Syntax

d:=letnode f x=e | letproba fx=¢ | dd

ex=c | x| (ee) | ople) | f(e) | last x | e where rec E
| present e —> e else e | reset e every e
| sample(e) | observe(e, e) | infer(e)

E:=x=¢e | intx=c | Eand E

Other constructs can be expressed in this kernel.
Probabilistic models are nodes (proba)
Local equations in e where rec E are scheduled
x where

rec init x1 = cl

and init x2 = 2

and x1 = el

and x2 = e2

12



Syntax

d:=letnode f x=e | letproba fx=¢ | dd

ex=c | x| (ee) | ople) | f(e) | last x | e where rec E
| present e —> e else e | reset e every e
| sample(e) | observe(e, e) | infer(e)

E:=x=¢e | intx=c | Eand E

Other constructs can be expressed in this kernel.
Probabilistic models are nodes (proba)

Local equations in e where rec E are scheduled

x where
rec init x1 = cl x=0->prex + 1
and init x2 = c2
and x1 = el x where
and x2 = e2 rec init fst = true

and init x =0
and fst = false
and x = if last fst then 0 else last x + 1

12



lyping: D vs. P

G+P e : T dist Grley:Tdist Grley: T
G +" sample(e) : T G " observe(ey, e2) : unit
Grle:T Gthe:T
Gr e:T G +° infer(e) : T dist

Add a kind D (deterministic) or P (probabilistic)
sample and observe can only be used in a probabilistic context

Deterministic expression can be lifted to probabilistic ones
Transition realized by infer

Add a datatype for distributions 7 dist

13 [Benveniste et al. 11]



Co-iteration Semantics

Deterministic Stream: Initial state, transition function

CoStream(T,S) =S X (S > T x S)
CoNode(T,T’,S) =SX(S—>T —> T’ x9S).

[elly : CoStream(T, S) = [[e]]i,, [[e]]‘;,

14 [Caspi, Pouzet 94, Staton 17]



Co-iteration Semantics

Deterministic Stream: Initial state, transition function

CoStream(T,S) =S X (S > T x S)
CoNode(T,T’,S) =SX(S—>T —> T’ x9S).

[elly : CoStream(T, S) = [el, [[e]]‘;,

Probabilistic Stream: transition function returns a measure over pairs (result, state)

CoPStream(T,S) = S X (S — (Z1xs — [0, ]))
CoPNode(T,T’,5) = Sx (S > T — (Z7/xs — [0, 00]))

{lelty : CoPStream(T,S) = {[e]};;, {[e]})s,

14 [Caspi, Pouzet 94, Staton 17]



Co-iteration Semantics

Deterministic Stream: Initial state, transition function

CoStream(T,S) =S X (S > T x S)
CoNode(T,T’,S) =SX(S—>T —> T’ x9S).

[elly : CoStream(T, S) = [el, [[e]]‘;,

Probabilistic Stream: transition function returns a measure over pairs (result, state)

CoPStream(T,S) = S X (S — (Z1xs — [0, ]))
CoPNode(T,T’,5) = Sx (S > T — (Z7/xs — [0, 00]))

{lelty : CoPStream(T, S) = {[e]};, {lely 1w:Xp — [0, ]

T et — H
Normalize the measure to obtain a distribution @1 dist = [ u(dx)

14 [Caspi, Pouzet 94, Staton 17]



Co-lteration Semantics: D

[xI, = 0O
[l = 2s. (r(x).5)
[present e —> e; else ez]]; = ([e]}, [ed]?, [[62]];)
[present e —> e1 else ez]]; = A(s,s1,87). let v,s" = [[e;(s) in
if v then let 01,S{ = :61]];(51) in (vy, (s, S{,Sz))
else let v, sy = [le2]ly (s2) in (v, (s', 51,53))
| e where Ik (c1, €2),
rec init x; = ¢; and init x2 = ¢ = | (e ]}, [[62]];,),
_ _ ]
_ and x1 = e; and x2 = e Iy [[e]]y
A((my1, my), (s1,52), $).
- o let y1 = y|mq/x1_last] in let yo, = y3|my/x2_last] in
€ Wh?r? o let v1,s] = [[el]];z(sl) in let y] = ys|v1/x1] in
rec init x; = ¢; and init x2 = ¢o = let Uz,Sé = [[e2]5,(sy) in let Yzl _ Y{[Uz/xz] in
and x1 = e1 and x3 = e , S AN
! Ay let v, s’ = [[e]]y,(s) in
2

0, (()/2/[3(1], Yzl[XZ])a (S{, Sé)a S,)

15



Co-lteration Semantics: P

{[e]}}i, = [[e]]g, if kindOf(e) =D

{[e]}; = As. AU. 5[[6]];(3)([]) if kindOf(e) =D

fsample@}, = [el!

{sample(e)lty = As. AU. let p,s" = [[e]}(s) in /T,u(dv) dv.s'(U)

{observe(es, ez)]};
{lobserve(es, e2) [}

(TerTy .Le215)
A(s1, 82). AU.
let pi, 7 = [le1]l} (s1) in
let v, s, = [lezly (s2) in ppar(v) * 0¢),(s;,5,)(U)

16



Co-lteration Semantics: P

{[e]}}i, = [[e]]g, if kindOf(e) =D
{[e]}; = As. AU. 5[[6]];(3)([]) if kindOf(e) =D

{sample(@}, = [ell}
{sample(e)lty = As. AU. let p,s" = [[e]}(s) in /T,u(dv) dv.s'(U)

{observe(er, e2)lt, = ([eall} [e21})
{lobserve(er, e2)[; = Als1,82). AU.

let pi, 7 = [le1]l} (s1) in
let v, sy = [le2]l} (s2) in ppar(v) * O, (s7,5,)(U)

A((mla m2)7 (Sla 32)9 S)' AU.
let y1 = y|mq/x1_last] in let y» = y1|my/x2_last] in
let py = {les]ty,(s1) in

e where | [ i(dvy, ds))let y] = yalv1/x1] in
rec init x1 = ¢1 and init xg = ¢9 = let 11y = [[ex]° :
2 = [le2]l°,(s2) in
| and x1 = e; and x2 = e "

7 /I'IZ(d’029 dSé)let YZ, — }/{[Uz/xz] ln
let pi = {el}},(s) in

/,u(dv, ds’) 5@,((y2’[x1],y2’[x2]),(si,sé),sf)(U)
16



Co-lteration Semantics: infer

[[infer(e)]]; = AU. 5[[6]];(U)

[infer(e)]lS = Ao. let p = AU fs o(ds){ely (s)(U)
y .

- Js ods){el5 (s)(T)

in (1. (), o4 (1))

The state of infer is a distribution
At each step infer compute a distribution of results, and a distribution of states

Free variables in e capture input from deterministic processes

The distribution of results can be used by other deterministic processes
The distribution of state is used for the next step

Inference-in-the-loop

17



INnference

18



Particle Filtering

Launch N particles. At each step:
Each particle generate pairs (result, score) with an importance score
Normalize the pairs based on the score
Re-sample a new set of particles from this distribution

19



Particle Filtering

Launch N particles. At each step:
Each particle generate pairs (result, score) with an importance score
Normalize the pairs based on the score
Re-sample a new set of particles from this distribution

20



Particle Filtering

Launch N particles. At each step:
Each particle generate pairs (result, score) with an importance score
Normalize the pairs based on the score
Re-sample a new set of particles from this distribution

21



Particle Filtering

Launch N particles. At each step:
Each particle generate pairs (result, score) with an importance score
Normalize the pairs based on the score
Re-sample a new set of particles from this distribution

22



Particle Filtering

Launch N particles. At each step:
Each particle generate pairs (result, score) with an importance score
Normalize the pairs based on the score
Re-sample a new set of particles from this distribution

23



Particle Filtering

Launch N particles. At each step:
Each particle generate pairs (result, score) with an importance score
Normalize the pairs based on the score
Re-sample a new set of particles from this distribution

24



Particle Filtering

Launch N particles. At each step:
Each particle generate pairs (result, score) with an importance score
Normalize the pairs based on the score
Re-sample a new set of particles from this distribution

25



Particle Filtering

Launch N particles. At each step:
Each particle generate pairs (result, score) with an importance score
Normalize the pairs based on the score
Re-sample a new set of particles from this distribution

20






Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

08 [Murray et al. 2018]



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

29



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

29



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

29



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

29



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

30



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

30



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

30



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

30



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

31



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

31



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

31



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

»

31



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

»

32



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

»

32



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

»

32



Delayed Sampling

Particle filter + symbolic computations
Exploit relations between random variables to maintain a Bayesian network
Observation can be incorporated by analytically conditioning the network
Exact solution if possible, default to particle filtering otherwise

o.

32



Streaming Delayed Sampling

Problem: the size of the network is linear in the number of samples
Novel implementations (SDS, and BDS) run in bounded memory

Robot Ideal Memory

10* . — T

103 L .t :

NNYNYYYYYYYYYYYYYYYYYYYYYYYYVYYYYYYYVYYYYVYYY

101 | | | | | | |
0 200 400 600 800 1000 1200 1400 1600

PF BDS vSDS ADS

33



Streaming Delayed Sampling

PF BDS v SDS

Robot Accurac Robot Lat
 —— uraty. 10 Y —
. 10' 3 g¥ I I E
10* | | : 5! I :

100 | :
10° L . - ' :
¥
102 | . 107 ¢ E
¥y v ¥¥ ¥ ¥ v ¥¥ ¥ Yy ¥ vir
101 ' ' 102 I |
1 10 100 1000 1 10 100 1000

SLAM Accurac SLAM Lat

101 :'I i T T T i T ""YI i i ""': 101 I i T T TTTT i 'a'e'r?C'Y'l i i T

E: T P Ll T o | i

i ¥ Hﬁﬁﬁ H | 10° | ﬁ}; - ;

100 | v -1 | L@L@ .

U I }M% o ;Iﬂ é

111 T 3 v ]

- T T _

v 1
1071 L Ll L N B 103 L L
1 10 100 1000 1 10 100 1000
Number of Particles (log scale) Number of Particles (log scale)

34



Step Execution Time (ms)

Streaming Delayed Sampling

Benchmarks illustrate: fixed parameters, trajectory, inference-in-the-loop
Baseline: accuracy of SDS with 500 particles
Latency of the inference algorithms to reach comparable accuracy

PF BDS SDS

101§ T 1 S o o
= - o _ R 3 3
- S - - N R —
100: == < (@) (a) A A I A
= . LN (a») I o o
- T o B = S
_ — A o T <¥
(@) Q o) o
1071- s ok g 1T | -
- N o —
_ Ln (e}
_ O~ o0
10_2§
- T
_ (=)
10-3- Il =71
; i —{ —
Beta- Gaussian- Kalman-1D Outlier Robot SLAM
Bernoulli Gaussian

35

> 600

40 ———

MTT



Conclusion

ProbZelus
Synchronous language extended with probabilistic constructs

Inference-in-the-loop
Efficient streaming inference algorithms

Design, Semantics, Compilation
Type system to discriminate deterministic and probabilistic processes
Measure-based co-iterative semantics
Semantics preserving compilation scheme

Streaming inference
Adapt particle filtering and delayed sampling to run on stream processors
Streaming delayed sampling implementation that run in bounded memory

36



