Reactive Probabilistic Programming

Guillaume Baudart, Louis Mandel Marc Pouzet

Eric Atkinson, Benjamin Sherman, Michael Carbin

IBM Research

ENS Paris

MIT

Probabilistic Programming

Probabilistic Programming

Programming and reasoning with uncertainty

- Program functions with uncertainty: sample from distributions
- Condition on observed data: inputs of the model

Probabilistic Programming Languages

Bugs, Stan, Church, Blog, Anglican, Venture, Figaro, WebPL, Pyro, Edward, ...

Probabilistic constructs:

- $\mathbf{x} = \mathbf{sample}(d)$: introduce a random variable x of distribution d
- observe(d, y): measure the likelihood of an observation y w.r.t d
- infer m obs: compute output distribution of a model m given obs

Inference: compute probability distribution defined by a model given observations or data (similar to learning in machine learning)

ProbZelus: Design Choices

Zelus extended with probabilistic constructs

Inference in the loop

- Interaction between deterministic processes and probabilistic models
- Models receives input from the environment
- Deterministic processes can access intermediate results
- Feedback between inferred distribution and deterministic processes

Streaming inference

- Inference runs in parallel with deterministic processes (non-terminating)
- Should run with bounded ressources
- Multiples inference algorithms with different trade-off cost/accuracy
- Sequential Monte-Carlo (SMC) vs. streaming delayed sampling

Bayesian Inference (in-the-loop)

Learn parameters from data

- Latent parameters at instant t θ_t
- \blacksquare Observed data $x_1, \ldots x_t$

Compute the distribution $p(\theta_t \mid x_1, \dots x_t)$ at each time step

$$p(\theta_t \mid x_1, \dots x_t) = \frac{p(\theta_t)p(x_1, \dots, x_t \mid \theta_t)}{p(x_1, \dots, x_t)}$$
 (Bayes' theorem)

Bayesian Inference (in-the-loop)

Learn parameters from data

- lacksquare Latent parameters at instant t $\, heta_t$
- Observed data $x_1, \ldots x_t$

Compute the distribution $p(\theta_t \mid x_1, \dots x_t)$ at each time step

$$p(\theta_t \mid x_1, \dots x_t) = \frac{p(\theta_t) p(x_1, \dots, x_t \mid \theta_t)}{p(x_1, \dots, x_t)} \qquad \text{(Bayes' theorem)}$$

$$\propto p(\theta_t) p(x_1, \dots, x_t \mid \theta_t) \qquad \text{(Data are constants)}$$

Bayesian Inference (in-the-loop)

Learn parameters from data

- lacksquare Latent parameters at instant t $\, heta_t$
- \blacksquare Observed data $x_1, \ldots x_t$

Compute the distribution $p(\theta_t \mid x_1, \dots x_t)$ at each time step

$$p(\theta_t \mid x_1, \dots x_t) = \frac{p(\theta_t) p(x_1, \dots, x_t \mid \theta_t)}{p(x_1, \dots, x_t)} \qquad \text{(Bayes' theorem)}$$

$$\propto p(\theta_t) p(x_1, \dots, x_t \mid \theta_t) \qquad \text{(Data are constants)}$$

prior: sample likelihood: observe

Example

- Input: noisy acceleration acc (at each step), noisy position gps (sporadic)
- Output: command u to drive the robot to a given target
- State: $x_t = (position, velocity, acceleration)$
- Motion model: $x_{t+1} = A.x_t + B.u_t$ (A, B are constant matrices)

- Input: noisy acceleration acc (at each step), noisy position gps (sporadic)
- Output: command u to drive the robot to a given target
- State: $x_t = (position, velocity, acceleration)$
- Motion model: $x_{t+1} = A.x_t + B.u_t$ (A, B are constant matrices)

- exact value
- estimated value
- gps readings

Language

Syntax

```
d := let node f x = e  | let proba f x = e  | d d
e := c  | x  | (e,e) | op(e) | f(e) | last x  | e where rec E | present e \longrightarrow e else e | reset e every e | sample(e) | observe(e, e) | infer(e)
E := x = e | init x = c | E and E
```

- Other constructs can be expressed in this kernel.
- Probabilistic models are nodes (proba)
- Local equations in e where rec E are scheduled

```
x where

rec init x1 = c1

and init x2 = c2

and x1 = e1

and x2 = e2
```

Syntax

```
d := let node f x = e  | let proba f x = e  | d d
e := c  | x  | (e,e) | op(e) | f(e) | last x  | e where rec E | present e \longrightarrow e else e | reset e every e | sample(e) | observe(e, e) | infer(e)
E := x = e | init x = c | E and E
```

- Other constructs can be expressed in this kernel.
- Probabilistic models are nodes (proba)
- Local equations in e where rec E are scheduled

```
x where

rec init x1 = c1

and init x2 = c2

and x1 = e1

and x2 = e2
```

```
x = 0 \rightarrow pre \times + 1

x where

rec init fst = true

and init x = 0

and fst = false

and x = if last fst then 0 else last x + 1
```

Typing: D vs. P

$$G \vdash^{D} e : T \text{ dist} \qquad G \vdash^{D} e_{1} : T \text{ dist} \qquad G \vdash^{D} e_{2} : T$$

$$G \vdash^{P} \text{ sample}(e) : T \qquad G \vdash^{P} \text{ observe}(e_{1}, e_{2}) : \text{ unit}$$

$$G \vdash^{P} e : T \qquad G \vdash^{P} e : T$$

$$G \vdash^{P} e : T \qquad G \vdash^{D} \text{ infer}(e) : T \text{ dist}$$

- Add a kind D (deterministic) or P (probabilistic)
- **sample** and **observe** can only be used in a probabilistic context
- Deterministic expression can be lifted to probabilistic ones
- Transition realized by infer
- Add a datatype for distributions T dist

Co-iteration Semantics

Deterministic Stream: Initial state, transition function

$$CoStream(T, S) = S \times (S \rightarrow T \times S)$$

 $CoNode(T, T', S) = S \times (S \rightarrow T \rightarrow T' \times S).$

$$\llbracket e \rrbracket_{\gamma} : CoStream(T, S) = \llbracket e \rrbracket_{\gamma}^{i}, \llbracket e \rrbracket_{\gamma}^{s}$$

Co-iteration Semantics

Deterministic Stream: Initial state, transition function

$$CoStream(T, S) = S \times (S \to T \times S)$$

$$CoNode(T, T', S) = S \times (S \to T \to T' \times S).$$

$$\llbracket e \rrbracket_{\gamma} : CoStream(T, S) = \llbracket e \rrbracket_{\gamma}^{i}, \llbracket e \rrbracket_{\gamma}^{s}$$

Probabilistic Stream: transition function returns a measure over pairs (result, state)

$$CoPStream(T, S) = S \times (S \to (\Sigma_{T \times S} \to [0, \infty]))$$

$$CoPNode(T, T', S) = S \times (S \to T \to (\Sigma_{T' \times S} \to [0, \infty]))$$

$$\{e\}_{\gamma} : CoPStream(T, S) = \{e\}_{\gamma}^{i}, \{e\}_{\gamma}^{s}$$

Co-iteration Semantics

Deterministic Stream: Initial state, transition function

$$CoStream(T, S) = S \times (S \to T \times S)$$

$$CoNode(T, T', S) = S \times (S \to T \to T' \times S).$$

$$\llbracket e \rrbracket_{\gamma} : CoStream(T, S) = \llbracket e \rrbracket_{\gamma}^{i}, \llbracket e \rrbracket_{\gamma}^{s}$$

Probabilistic Stream: transition function returns a *measure* over pairs (result, state)

$$CoPStream(T, S) = S \times (S \to (\Sigma_{T \times S} \to [0, \infty]))$$

$$CoPNode(T, T', S) = S \times (S \to T \to (\Sigma_{T' \times S} \to [0, \infty]))$$

$$\{e\}_{\gamma} : CoPStream(T, S) = \{e\}_{\gamma}^{i}, \{e\}_{\gamma}^{s}$$

Normalize the measure to obtain a distribution

$$\mu: \Sigma_D \to [0, \infty]$$

$$d: T \text{ dist} = \frac{\mu}{\int_D \mu(dx)}$$

Co-iteration Semantics: D

```
    \begin{bmatrix} x \end{bmatrix}_{\gamma}^{i} &= () \\
    \begin{bmatrix} x \end{bmatrix}_{\nu}^{s} &= \lambda s. (\gamma(x), s)

    [\![\mathsf{present}\ e \ -> e_1\ \mathsf{else}\ e_2]\!]^i_{\gamma} = ([\![e]\!]^i_{\gamma}, [\![e_1]\!]^i_{\gamma}, [\![e_2]\!]^i_{\gamma})
    [[present e \to e_1 else e_2]]_{V}^{s} = \lambda(s, s_1, s_2). let v, s' = [[e]]_{V}^{s}(s) in
                                                                                                                                                                                                                                                                if v then let v_1, s'_1 = [\![e_1]\!]_v^s(s_1) in (v_1, (s', s'_1, s_2))
                                                                                                                                                                                                                                                                                                   else let v_2, s_2' = [\![e_2]\!]_v^s(s_2) in (v_2, (s', s_1, s_2'))
\begin{bmatrix} e \text{ where} \\ \text{rec init } x_1 = c_1 \text{ and init } x_2 = c_2 \\ \text{and } x_1 = e_1 \text{ and } x_2 = e_2 \end{bmatrix}_{\gamma}^{i} = \begin{pmatrix} (c_1, c_2), \\ ([e_1]]_{\gamma}^{i}, [e_2]]_{\gamma}^{i}, \\ [e]]_{\gamma}^{i} \end{pmatrix}
                                                                                                                                                                                                                                                                                                             \lambda((m_1, m_2), (s_1, s_2), s).
                                                                                                                                                                                                                                                                                                                                let \gamma_1 = \gamma[m_1/x_1] in let \gamma_2 = \gamma_2[m_2/x_2] in
\begin{bmatrix} e \text{ where} \\ \text{rec init } x_1 = c_1 \text{ and init } x_2 = c_2 \\ \text{and } x_1 = e_1 \text{ and } x_2 = e_2 \end{bmatrix}_{\gamma}^{s} = \begin{bmatrix} e_1 \\ y_2 \\ e_1 \end{bmatrix}_{\gamma_2}^{s} (s_1) \text{ in let } \gamma_1' = \gamma_2 [v_1/x_1] \text{ in let } v_2, s_2' = [e_2]_{\gamma_1'}^{s} (s_2) \text{ in let } \gamma_2' = \gamma_1' [v_2/x_2] \text{ in let } v_2, s_2' = [e]_{\gamma_2'}^{s} (s_2) \text{ in let } v_2' = \gamma_1' [v_2/x_2] \text{ in let } v_2, s_2' = [e]_{\gamma_2'}^{s} (s_2) \text{ in let } v_2' = \gamma_1' [v_2/x_2] \text{ in let } v_2' = \gamma_1' [v_2/x_2] \text{ in let } v_2' = \gamma_2' [v_1/x_1] \text{ in let } v_2' = \gamma_1' [v_2/x_2] \text{ in let } v_2' = \gamma_1' [v_2/x_2] \text{ in let } v_2' = \gamma_1' [v_2/x_2] \text{ in let } v_2' = \gamma_2' 
                                                                                                                                                                                                                                                                                                                               v, ((\gamma_2'[x_1], \gamma_2'[x_2]), (s_1', s_2'), s')
```

Co-iteration Semantics: P

Co-iteration Semantics: P

```
\{ [sample(e)] \}_{V}^{i} = [ [e]]_{V}^{i}
 \{ \{ \text{sample}(e) \} \}_{v}^{s} = \lambda s. \lambda U. \text{ let } \mu, s' = [\![e]\!]_{v}^{s}(s) \text{ in } \int_{T} \mu(dv) \delta_{v,s'}(U) 
 \{[observe(e_1, e_2)]\}_{\gamma}^i = ([[e_1]]_{\gamma}^i, [[e_2]]_{\gamma}^i)
 \{ [observe(e_1, e_2)] \}_{V}^{s} = \lambda(s_1, s_2). \lambda U.
                                                                                                                                        let \mu, s_1' = [\![e_1]\!]_{V}^{s}(s_1) in
                                                                                                                                        let v, s_2' = [e_2]_v^s(s_2) in \mu_{pdf}(v) * \delta_{(),(s_1',s_2)}(U)
                                                                                                                                                                                                  \lambda((m_1, m_2), (s_1, s_2), s). \lambda U.
                                                                                                                                                                                                                let \gamma_1 = \gamma[m_1/x_1] in let \gamma_2 = \gamma_1[m_2/x_2] in
                                                                                                                                                                                                              let \mu_1 = \{ e_1 \}_{\gamma_2}^s(s_1) in
\begin{cases} e \text{ where} \\ \text{rec init } x_1 = c_1 \text{ and init } x_2 = c_2 \\ \text{and } x_1 = e_1 \text{ and } x_2 = e_2 \end{cases} = \begin{cases} \int \mu_1(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ let \ \mu_2 = [e_2] [s_1', s_2) \text{ in} \\ \int \mu_1(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} \\ \int \mu_2(dv_1, ds_1') let \ \gamma_1' = \gamma_2 [v_1/x_1] \text{ in} 
                                                                                                                                                                                                                            \int \mu_2(dv_2, ds_2') let \ \gamma_2' = \gamma_1' [v_2/x_2] \ in
                                                                                                                                                                                                                                       let \mu = \{e\}_{V_0}^s(s) in
                                                                                                                                                                                                                                         \int \mu(dv, ds') \, \bar{\delta}_{v,((\gamma_2'[x_1], \gamma_2'[x_2]), (s_1', s_2'), s')}(U)
```

Co-iteration Semantics: infer

$$\begin{aligned} & [\![\inf er(e)]\!]_{\gamma}^{i} = \lambda U. \ \delta_{[\![e]\!]_{\gamma}^{i}}(U) \\ & [\![\inf er(e)]\!]_{\gamma}^{s} = \lambda \sigma. \ let \ \mu = \lambda U. \ \frac{\int_{S} \sigma(ds) \{\![e]\!]_{\gamma}^{s}(s)(U)}{\int_{S} \sigma(ds) \{\![e]\!]_{\gamma}^{s}(s)(\top)} \ in \ (\pi_{1*}(\mu), \pi_{2*}(\mu)) \end{aligned}$$

- The state of infer is a distribution
- At each step infer compute a distribution of results, and a distribution of states
- lacktriangle Free variables in e capture input from deterministic processes
- The distribution of results can be used by other deterministic processes
- The distribution of state is used for the next step

Inference-in-the-loop

Inference

- Each particle generate pairs (result, score) with an importance score
- Normalize the pairs based on the score
- Re-sample a new set of particles from this distribution

- Each particle generate pairs (result, score) with an importance score
- Normalize the pairs based on the score
- Re-sample a new set of particles from this distribution

- Each particle generate pairs (result, score) with an importance score
- Normalize the pairs based on the score
- Re-sample a new set of particles from this distribution

- Each particle generate pairs (result, score) with an importance score
- Normalize the pairs based on the score
- Re-sample a new set of particles from this distribution

- Each particle generate pairs (result, score) with an importance score
- Normalize the pairs based on the score
- Re-sample a new set of particles from this distribution

Launch N particles. At each step:

- Each particle generate pairs (result, score) with an importance score
- Normalize the pairs based on the score
- Re-sample a new set of particles from this distribution

0

0

- Each particle generate pairs (result, score) with an importance score
- Normalize the pairs based on the score
- Re-sample a new set of particles from this distribution

- Each particle generate pairs (result, score) with an importance score
- Normalize the pairs based on the score
- Re-sample a new set of particles from this distribution

Delayed Sampling

Particle filter + symbolic computations

- Exploit relations between random variables to maintain a Bayesian network
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

[Murray et al. 2018]

Delayed Sampling

Particle filter + symbolic computations

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a Bayesian network
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

- Exploit relations between random variables to maintain a *Bayesian network*
- Observation can be incorporated by analytically conditioning the network
- Exact solution if possible, default to particle filtering otherwise

Streaming Delayed Sampling

- Problem: the size of the network is linear in the number of samples
- Novel implementations (SDS, and BDS) run in bounded memory

Streaming Delayed Sampling

Streaming Delayed Sampling

- Benchmarks illustrate: fixed parameters, trajectory, inference-in-the-loop
- Baseline: accuracy of SDS with 500 particles
- Latency of the inference algorithms to reach comparable accuracy

Conclusion

ProbZelus

- Synchronous language extended with probabilistic constructs
- Inference-in-the-loop
- Efficient streaming inference algorithms

Design, Semantics, Compilation

- Type system to discriminate deterministic and probabilistic processes
- Measure-based co-iterative semantics
- Semantics preserving compilation scheme

Streaming inference

- Adapt particle filtering and delayed sampling to run on stream processors
- Streaming delayed sampling implementation that run in bounded memory