
© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 1

A Multi-Rate Extension of the ForeC Precision
Timed Programming Language for Multi-Cores

Alain Girault Nicolas Hili Eric Jenn Eugene Yip

Synchron 2019, Aussois, France

A. Girault, N. Hili, E. Jenn, and E. Yip. A Multi-Rate Precision Timed Programming Language for
Multi-Cores. Forum for Specification and Design Languages (FDL), United Kingdom, 2019

tomorrow's software technologies

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 2

Outline

• Background and motivation

• Multi-rate ForeC synchronous language

• Bare-metal implementation

• Conclusions and Outlook

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 3

Cyber-Physical and Real-Time Systems

Correct outputs required at correct times!
Otherwise: collisions, erratic behaviour, endangerment of life,
failure to complete mission, …

Sense
• odometry
• orientation
• obstacles

Actuate
• motors
• speakers
• lights

Analyses and decides

Embedded System

Evolves continuously

Physical Environment

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 4

Cyber-Physical and Real-Time Systems

Correct outputs required at correct times!
Otherwise: collisions, erratic behaviour, endangerment of life,
failure to complete mission, …

Sense
• odometry
• orientation
• obstacles

Actuate
• motors
• speakers
• lights

Analyses and decides

Embedded System

Evolves continuously

Physical Environment

Many sources of
concurrency: I/O and

control logic

Parallel execution for
shorter reaction times

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 5

Real-Time and Multi-Rate Concerns

• System interfaces with different aspects of its environment,
each evolving at their own pace

• Rates affect, e.g., the system’s performance and compliance to
safety requirements

Autonomous Mobile Robot

Rotary encoders (10KHz)
IMU (20Hz)

Radio localisation (2Hz)
Marker positioning (1Hz)

PWM (100Hz)Mission
Generation

Target
Generation

Localization Monitoring

Obstacle
Monitoring

Safety
Management

Motor
Control

LIDAR (1–10Hz)

Maps,
Missions

1–5Hz

20Hz

2.5–100Hz

100Hz

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 6

Real-Time and Multi-Rate Concerns

Autonomous Mobile Robot

Rotary encoders (10KHz)
IMU (20Hz)

Radio localisation (2Hz)
Marker positioning (1Hz)

PWM (100Hz)Mission
Generation

Target
Generation

Localization Monitoring

Obstacle
Monitoring

Safety
Management

Motor
Control

LIDAR (1–10Hz)

Maps,
Missions

1–5Hz

20Hz

2.5–100Hz

100Hz
50ms

100ms

20ms

Mono-rate execution (naïve)

100ms

50ms

20ms

100ms

50ms

20ms
Multi-rate execution

Poor system utilisation, higher platform costs

100ms

50ms

20ms
Mono-rate execution (task splitting)

Fragile design, higher development costs

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 7

ForeC Language

• C-based, multi-threaded, mono-rate, synchronous language for
embedded multi-cores

• Safety-critical/formalised subset of C
– E.g., MISRA-C, Power of 10, Clight, or Cyclone
– E.g., No unbounded loops and recursion, pointer reassignments,

gotos, and dynamic memory allocations

• Minimal set of synchronous constructs
– in, out, env, and shared variables
– par(st,st), pause, abort st when (cond)
– Formally defined by small-step semantic rules

Static timing analysis
of multi-cores

Performant multi-
core implementation

Deterministic
and reactive

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 8

• Synchrony hypothesis
– Sampling, computing, and emitting all take zero time
– Verified by WCRT analysis

• Inputs sampled at start of tick, outputs emitted at end of tick
– Timing behaviour reminiscent of Logical Execution Time (LET)
– Threads execute in isolation

ForeC Timing Model

Key
■ Start of tick/Inputs ■ Thread body ■ End of tick/Outputs

Time

Tick length

0 1 2 3 4
Time (Global ticks)

Thread t1

Thread t2

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 9

MULTI-RATE FOREC LANGUAGE

• Defining thread rates
• Multi-rate synchronisation, communication, and preemption
• Maintain backwards compatibility with mono-rate ForeC

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 10

Defining Thread Rates

• Logical rates defined in the ForeC program file (*.forec)

const rate r0;
const rate r1=r0*(1/2),

r2=r0,
r3=r1*4,
r4=r2*(1/3);

• Concrete rates defined in the ForeC header file (*.foreh)

// Rate in microseconds (µs)
const rate r0=100

architecture: multipret
core0: t1
core1: t2

r0

r1=r0*(1/2) r2=r0

r3=r1*4 r4=r2*(1/3)

r0=100

r1=50 r2=100

r3=200 r4=100/3

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 11

Multi-Rate Synchronisation
const rate r0; // 100µs
const rate r1=r0*(1/2), // 50µs

r2=r0; // 100µs

env in int x=0;
env out shared int y=0 combine mod with +;

thread t1(void) @r2 {
y+=1; pause;
y+=1; pause;
y+=1;

}

thread t2(void) @r1 {
y+=10; pause;
y+=10; pause;
y+=10;

}

void main(void) @r0 {
par(t1(), t2());

} • Total global tick: All threads end their tick together

• Partial global tick: Some threads end their tick together

Global ticks

main @r0

t2 @r1

t1 @r2

0
(0µs)

2
(100µs)

3
(200µs)

4
(300µs)

0

21

1 2

1 2 3

fo
rk

join

join

1

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 12

Multi-Rate Communication
const rate r0; // 100µs
const rate r1=r0*(1/2), // 50µs

r2=r0; // 100µs

env in int x=0;
env out shared int y=0 combine mod with +;

thread t1(void) @r2 {
y+=1; pause;
y+=1; pause;
y+=1;

}

thread t2(void) @r1 {
y+=10; pause;
y+=10; pause;
y+=10;

}

void main(void) @r0 {
par(t1(), t2());

} • Threads copy the shared variable and modify in isolation

• Copies are combined when the tick ends

Global ticks

main @r0

t2 @r1

t1 @r2

0
(0µs)

2
(100µs)

3
(200µs)

4
(300µs)

0

21

1 2

1 2 3

fo
rk

join

join

1

y=0 y=54y=10 y=21 y=53

y=1 y=22

y=10 y=20 y=31

y=54

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 13

Combine Functions and Policies

• Thread isolation for thread-local reasoning
– Reduces the frequency of inter-core synchronisations

• Combine functions shall be commutative and associative
– plus(plus(th1,th2) , plus(th3,th4))

– Parallelisation and determinism

• Policies to control what copies are combined
– all, mod, and new

• Race conditions are avoided

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 14

Multi-Rate Preemption
const rate r0; // 100µs
const rate r1=r0*(1/2), // 50µs

r2=r0; // 100µs

env in int x=0;
env out shared int y=0 combine mod with +;

thread t1(void) @r2 {
y+=1; pause;
y+=1; pause;
y+=1;

}

thread t2(void) @r1 {
y+=10; pause;
y+=10; pause;
y+=10;

}

void main(void) @r0 {
weak abort {

par(t1(), t2());
} when (x==1);

}

• A weak abort allows its body to execute one last time

• The immediate checking of condition is possible

Global ticks

main @r0

t2 @r1

t1 @r2

0
(0µs)

2
(100µs)

0

1

1

fo
rk

join
join

1

x=0 x=1 x=0

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 15

Thoughts on Strong Preemption

• Possible behaviour
– Preemption is checked at the start of every (total/partial) global tick
– When triggered, all enclosed threads are terminated immediately
– Execution continues after the abort statement

• Problem: Some threads may already be in their local tick!
– Rollback threads’ executions (e.g., shared variables, outputs)?
– Wrong assumption about strong preemption when their tick began?
– Strong preemptions allowed when enclosing threads are mono-rate

• Want performant and statically analysable implementations!

t2 @r1

t1 @r2

Preempt

t2 @r1

t1 @r2

Preempt

?

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 16

Related Multi-Rate Synchronous Languages

• Multi-rate/-clock is a well established concept

• Inclusion in ForeC improves its practicality and usability for industrial acceptance

Language Style
Multi-Rate
Multi-Clock Communication

Code
Generation

Timing
Analysable

Esterel Founding
synchronous

languages

Imperative Partial

Instantaneous
signals

Sequential
(bare-metal)

✓
Lustre

Dataflow ✓
Prelude

Lustre with
multi-rate flows

Tasks (OS) OS dependent

PRET-C
Esterel inspired

constructs Imperative,
C-based

✗ Seq. shared
variables

Sequential
(bare-metal)

✓
(if bare-metal)

Multi-rate
ForeC

Designed to
exploit multi-cores

Partial
Parallel shared

variables
Threads (OS

or bare-metal)

Simulink
Block diagram
for dynamical

systems
Dataflow

✓
Signals

Sequential
(bare-metal),
Tasks (OS)

Giotto
Time-triggered,

logical execution
time

Coordination
Delayed
signals

Tasks (OS)
✓

(Embedded
machine)

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 17

BARE-METAL IMPLEMENTATION

• MultiPRET
• Compilation

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 18

MultiPRET Processor

• FlexPRET cores connected to shared memory via cross-bar
– RISC-V core designed according to PREcision Timed (PRET) philosophy
– Multi-threaded pipeline, scratchpad memories, PRET instructions
– Instructions with repeatable execution times

• Timing instructions
– get_time
– set_compare
– delay_until
– delay_until_periodic
– interrupt_on_expire
– deactivate_exception

• Multi-rate ForeC as a PRET programming language
– Programmers control physical timing behaviour via thread rates

Interconnect (e.g., cross-bar or TDMA bus)

FlexPRET
core1

ISPM
DSPM

Shared
memory

. . . FlexPRET
coren

ISPM
DSPM

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 19

Multi-Rate ForeC Compilation for MultiPRET

• Bootup routine for each core
– Initialise task scheduler (master core executes the main thread)
– Synchronise to initiate the first global tick

• Scheduler routines
– Sample inputs, compute the global ticks that threads participate in
– Manage the forking/joining of threads
– Combine the shared variables of participating threads, emit outputs

• Time-triggered execution via the PRET timing instructions
– Trigger the execution of threads and scheduling routines at precise

times, e.g., at local/global tick boundaries

• Perform worst-case execution time (WCET) analysis
– Verify that all threads will complete their local ticks within their rate

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 20

CONCLUSIONS AND OUTLOOK

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 21

Conclusions and Outlook

• A real-time system may need to react to different aspects of its
environment, each at their own pace

• Extended ForeC with the ability to model multi-rate activities
– C-based, PRET language designed for multi-core execution
– rate, in, out, env, shared, pause, par, and abort

• Bare-metal implementation feasible for a MultiPRET processor

• Explore multi-rate abort semantics further

• Generalise rates with offsets

• Explore the support for a forest of rates

• Define the formal semantics of Multi-rate ForeC

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 22

References (Multi-Rate)

[BS01] G. Berry and E. Sentovich. Multiclock Esterel. IFIP Conference on Correct Hardware Design
and Verification Methods, ser. LNCS, vol. 2144. Springer, 2001.

[FBLP08] J. Forget, F. Boniol, D. Lesens, and C. Pagetti. A Multi-periodic Synchronous Data-flow
Language. HASE, 2008.

[ARG10] S. Andalam, P. S. Roop, and A. Girault. Predictable Multithreading of Embedded
Applications using PRET-C. MEMOCODE, 2010.

[YRGA16] E. Yip, P. S. Roop, A. Girault, and M. Biglari-Abhari. Synchronous Deterministic Parallel
Programming for Multicores with ForeC: Programming Language, Semantics, and Code
Generation. Inria Research Report RR-8943, 2016.

[MW19] The MathWorks, Inc. Simulink – Simulation and Model-based Design. Available online
https://www.mathworks.com/products/simulink.html

[HHK01] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A Time-triggered Language for Embedded
Programming. EMSOFT, 2001.

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 23

References (MultiPRET and Safe-subset of C)

[HGJ19] N. Hili, A. Girault, and E. Jenn. Worst-case Reaction Time Optimization on Deterministic
Multi-core Architectures with Synchronous Languages. RTCSA, 2019.

[YRAG13] E. Yip, P. S. Roop, M. Biglari-Abhari, and A. Girault. Programming and Timing Analysis of
Parallel Programs on Multicores. ACSD, 2013.

[MISRA13] Motor Industry Software Reliability Association. MISRA-C: 2012: Guidelines for the Use
of the C Language in Critical Systems. HORIBA MIRA Limited, 2013.

[H06] G. J. Holzmann. The Power of 10: Rules for Developing Safety-Critical Code. IEEE Computer,
vol. 39, no. 6, 2006.

[BL09] S. Blazy and X. Leroy. Mechanized Semantics for the Clight Subset of the C Language. Journal
of Automated Reasoning, vol. 43, no. 3, Springer, 2009.

[JMG+02] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang. Cyclone: A
Safe Dialect of C. USENIX ATC, 2002.

© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 24

Thank you!

Questions?

