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Outline

• Background and motivation

• Multi-rate ForeC synchronous language

• Bare-metal implementation

• Conclusions and Outlook
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Cyber-Physical and Real-Time Systems

Correct outputs required at correct times! 
Otherwise: collisions, erratic behaviour, endangerment of life, 
failure to complete mission, …
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Actuate
• motors
• speakers
• lights

Analyses and decides

Embedded System

Evolves continuously

Physical Environment
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Real-Time and Multi-Rate Concerns

• System interfaces with different aspects of its environment, 
each evolving at their own pace

• Rates affect, e.g., the system’s performance and compliance to 
safety requirements
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Real-Time and Multi-Rate Concerns
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ForeC Language

• C-based, multi-threaded, mono-rate, synchronous language for 
embedded multi-cores

• Safety-critical/formalised subset of C
– E.g., MISRA-C, Power of 10, Clight, or Cyclone
– E.g., No unbounded loops and recursion, pointer reassignments, 

gotos, and dynamic memory allocations

• Minimal set of synchronous constructs
– in, out, env, and shared variables
– par(st,st), pause, abort st when (cond)
– Formally defined by small-step semantic rules

Static timing analysis 
of multi-cores

Performant multi-
core implementation

Deterministic 
and reactive
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• Synchrony hypothesis
– Sampling, computing, and emitting all take zero time
– Verified by WCRT analysis

• Inputs sampled at start of tick, outputs emitted at end of tick
– Timing behaviour reminiscent of Logical Execution Time (LET)
– Threads execute in isolation

ForeC Timing Model

Key
■ Start of tick/Inputs ■ Thread body ■ End of tick/Outputs

Time

Tick length

0 1 2 3 4
Time (Global ticks)

Thread t1

Thread t2



© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 9

MULTI-RATE FOREC LANGUAGE

• Defining thread rates
• Multi-rate synchronisation, communication, and preemption
• Maintain backwards compatibility with mono-rate ForeC
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Defining Thread Rates

• Logical rates defined in the ForeC program file (*.forec)

const rate r0;
const rate r1=r0*(1/2), 

r2=r0, 
r3=r1*4, 
r4=r2*(1/3);

• Concrete rates defined in the ForeC header file (*.foreh)

// Rate in microseconds (µs)
const rate r0=100

architecture: multipret
core0: t1
core1: t2

r0

r1=r0*(1/2) r2=r0

r3=r1*4 r4=r2*(1/3)

r0=100

r1=50 r2=100

r3=200 r4=100/3
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Multi-Rate Synchronisation
const rate r0;          // 100µs
const rate r1=r0*(1/2), //  50µs

r2=r0;       // 100µs

env in int x=0;
env out shared int y=0 combine mod with +;

thread t1(void) @r2 {
y+=1; pause;
y+=1; pause;
y+=1;

}

thread t2(void) @r1 {
y+=10; pause;
y+=10; pause;
y+=10;

}

void main(void) @r0 {
par(t1(), t2());

} • Total global tick: All threads end their tick together

• Partial global tick: Some threads end their tick together

Global ticks

main @r0

t2 @r1

t1 @r2

0
(0µs)

2
(100µs)

3
(200µs)

4
(300µs)

0

21

1 2

1 2 3

fo
rk

join

join

1
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Multi-Rate Communication
const rate r0;          // 100µs
const rate r1=r0*(1/2), // 50µs

r2=r0;       // 100µs

env in int x=0;
env out shared int y=0 combine mod with +;

thread t1(void) @r2 {
y+=1; pause;
y+=1; pause;
y+=1;

}

thread t2(void) @r1 {
y+=10; pause;
y+=10; pause;
y+=10;

}

void main(void) @r0 {
par(t1(), t2());

} • Threads copy the shared variable and modify in isolation

• Copies are combined when the tick ends

Global ticks

main @r0
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0
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2
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3
(200µs)

4
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1 2
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join
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y=54
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Combine Functions and Policies

• Thread isolation for thread-local reasoning
– Reduces the frequency of inter-core synchronisations

• Combine functions shall be commutative and associative
– plus( plus(th1,th2) , plus(th3,th4) )

– Parallelisation and determinism

• Policies to control what copies are combined
– all, mod, and new

• Race conditions are avoided
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Multi-Rate Preemption
const rate r0;          // 100µs
const rate r1=r0*(1/2), //  50µs

r2=r0;       // 100µs

env in int x=0;
env out shared int y=0 combine mod with +;

thread t1(void) @r2 {
y+=1; pause;
y+=1; pause;
y+=1;

}

thread t2(void) @r1 {
y+=10; pause;
y+=10; pause;
y+=10;

}

void main(void) @r0 {
weak abort {

par(t1(), t2());
} when (x==1);

}

• A weak abort allows its body to execute one last time

• The immediate checking of condition is possible

Global ticks

main @r0

t2 @r1

t1 @r2

0
(0µs)

2
(100µs)

0

1

1

fo
rk

join
join

1

x=0 x=1 x=0
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Thoughts on Strong Preemption

• Possible behaviour
– Preemption is checked at the start of every (total/partial) global tick 
– When triggered, all enclosed threads are terminated immediately
– Execution continues after the abort statement

• Problem: Some threads may already be in their local tick!
– Rollback threads’ executions (e.g., shared variables, outputs)?
– Wrong assumption about strong preemption when their tick began?
– Strong preemptions allowed when enclosing threads are mono-rate

• Want performant and statically analysable implementations!

t2 @r1

t1 @r2

Preempt

t2 @r1

t1 @r2

Preempt

?
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Related Multi-Rate Synchronous Languages

• Multi-rate/-clock is a well established concept

• Inclusion in ForeC improves its practicality and usability for industrial acceptance

Language Style
Multi-Rate
Multi-Clock Communication

Code 
Generation

Timing
Analysable

Esterel Founding 
synchronous 

languages

Imperative Partial

Instantaneous 
signals

Sequential
(bare-metal)

✓
Lustre

Dataflow ✓
Prelude

Lustre with 
multi-rate flows

Tasks (OS) OS dependent

PRET-C
Esterel inspired 

constructs Imperative,
C-based

✗ Seq. shared
variables

Sequential
(bare-metal)

✓
(if bare-metal)

Multi-rate
ForeC

Designed to 
exploit multi-cores

Partial
Parallel shared

variables
Threads (OS

or bare-metal)

Simulink
Block diagram 
for dynamical 

systems
Dataflow

✓
Signals

Sequential
(bare-metal),
Tasks (OS)

Giotto
Time-triggered, 

logical execution 
time

Coordination
Delayed
signals

Tasks (OS)
✓

(Embedded 
machine)
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BARE-METAL IMPLEMENTATION

• MultiPRET
• Compilation
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MultiPRET Processor

• FlexPRET cores connected to shared memory via cross-bar
– RISC-V core designed according to PREcision Timed (PRET) philosophy
– Multi-threaded pipeline, scratchpad memories, PRET instructions
– Instructions with repeatable execution times

• Timing instructions
– get_time
– set_compare
– delay_until
– delay_until_periodic
– interrupt_on_expire
– deactivate_exception

• Multi-rate ForeC as a PRET programming language
– Programmers control physical timing behaviour via thread rates

Interconnect (e.g., cross-bar or TDMA bus)

FlexPRET
core1

ISPM
DSPM

Shared 
memory

. . . FlexPRET
coren

ISPM
DSPM
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Multi-Rate ForeC Compilation for MultiPRET

• Bootup routine for each core
– Initialise task scheduler (master core executes the main thread)
– Synchronise to initiate the first global tick

• Scheduler routines
– Sample inputs, compute the global ticks that threads participate in
– Manage the forking/joining of threads
– Combine the shared variables of participating threads, emit outputs

• Time-triggered execution via the PRET timing instructions
– Trigger the execution of threads and scheduling routines at precise 

times, e.g., at local/global tick boundaries

• Perform worst-case execution time (WCET) analysis
– Verify that all threads will complete their local ticks within their rate
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CONCLUSIONS AND OUTLOOK



© 2019 A. Girault, N. Hili, E. Jenn, E. Yip A Multi-Rate Extension of the ForeC Precision Timed Programming Language for Multi-Cores – 21

Conclusions and Outlook

• A real-time system may need to react to different aspects of its 
environment, each at their own pace 

• Extended ForeC with the ability to model multi-rate activities
– C-based, PRET language designed for multi-core execution
– rate, in, out, env, shared, pause, par, and abort

• Bare-metal implementation feasible for a MultiPRET processor

• Explore multi-rate abort semantics further

• Generalise rates with offsets

• Explore the support for a forest of rates

• Define the formal semantics of Multi-rate ForeC
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Thank you!

Questions?


