
Mathematical Foundations
of Physical Systems
Modeling Languages

Albert Benveniste Benoît Caillaud
Khalil Ghorbal Mathias Malandain

(Inria, Rennes)

November 25, 2019

1 / 37



Multimode (aka. hybrid) systems

• Natural models for physical
phenomena

• mechanics (engagement/release of

links)

• thermodynamics (phase

(dis)appearance)

• hydraulics (opening/closing of a valve)

• electronics (switching diode/transistor)

• Fault modeling (component break)

• Reconfigurable systems ((dis)appearance

of components)

1



Multimode (aka. hybrid) systems

• Natural models for physical
phenomena

• mechanics (engagement/release of

links)

• thermodynamics (phase

(dis)appearance)

• hydraulics (opening/closing of a valve)

• electronics (switching diode/transistor)

• Fault modeling (component break)

• Reconfigurable systems ((dis)appearance

of components)

1



Multimode (aka. hybrid) systems

• Natural models for physical
phenomena

• mechanics (engagement/release of

links)

• thermodynamics (phase

(dis)appearance)

• hydraulics (opening/closing of a valve)

• electronics (switching diode/transistor)

• Fault modeling (component break)

• Reconfigurable systems ((dis)appearance

of components)

1



Multimode (aka. hybrid) systems

• Natural models for physical
phenomena

• mechanics (engagement/release of

links)

• thermodynamics (phase

(dis)appearance)

• hydraulics (opening/closing of a valve)

• electronics (switching diode/transistor)

• Fault modeling (component break)

• Reconfigurable systems ((dis)appearance

of components)

1



Compositionality and reuse: Simulink→ Modelica
From Block Diagram to Component Diagram

2 / 37



Compositionality and reuse: ODE→ DAE

from Simulink (ODE):
HS in state space form{

x ′ = f (x , u)
y = g(x , u)

the state space form
depends on the context

reuse is difficult


−→



to Modelica (DAE):
HS as physical balance equations{

0 = f (x ′, x , u)
0 = g(x , u)

Ohm & Kirchhoff laws, bond graphs,
multi-body mechanical systems

reuse is much easier

3 / 37



Compositionality and reuse: ODE→ DAE

I Modeling tools supporting DAE

I Most modeling tools provide a library of predefined models
ready for assembly (Mathworks/Simscape,
Siemens-LMS/AmeSim, Mathematica/NDSolve)

I Modelica comes with a full programming language that is a
public standard https://www.modelica.org/ ;

I Simscape and NDSolve use Matlab extended with “==”

I Also Spice dedicated to EDA

4 / 37

https://www.modelica.org/


A sketch of Modelica and its semantics [Fritzson]

• Modelica = DAE + Objects

• Class = container for equations

2



A sketch of Modelica and its semantics [Fritzson]

I Modelica Reference v3.3:

“The semantics of the Modelica language is specified by means of
a set of rules for translating any class described in the Modelica
language to a flat Modelica structure”

I the good:

I Semantics of continuous-time 1-mode Modelica models: Cauchy
problem on the DAE resulting from the inlining of all components

I Modelica supports multi-mode systems
x*x + y*y = 1;
der(x) + x + y = 0;
when x <= 0 do reinit(x,1); end;
when y <= 0 do reinit(y,x); end;

I the bad: What about the semantics of multi-mode systems?

I and . . . : Questionable simulations of many physically meaningful models

5 / 37



The clutch example
Separate analysis of each mode
The mode transitions: difficulties

The clutch example: a comprehensive approach
Nonstandard structural analysis
Back-Standardization
Results and code for the clutch

The Cup-and-Ball example: handling transient modes

Making this work in general
Structural analysis
Standardization

Further results
Escaping from standardization
What if we change the nonstandard representation of x ′?
Correctness of our notion of solution of multimode DAE

Conclusion

6 / 37



Examples of multi-mode systems

Cup-and-Ball game
(a two-mode
extension of

the pendulum)

⇒ A Clutch

A Circuit Breaker

7 / 37



The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

Note that τ1 + τ2 = 0 holds in all modes, reflecting that the angular momentum is
preserved everywhere (we assume that the system is closed)

8 / 37



The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

Mode γ = F: it is just an ODE system, nothing fancy
ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)
τ1 = 0 (e5)
τ2 = 0 (e6)

8 / 37



The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

Mode γ = T: it is now a DAE system
ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)
ω1 − ω2 = 0 (e3)
ω•1 = ω•2 (e•3)
τ1 + τ2 = 0 (e4)

Looking for an execution scheme? Try a 1st-order Euler scheme

8 / 37



The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

Mode γ = T: it is now a dAE system
ω•1 = ω1 + δ.f1(ω1, τ1) (eδ1)
ω•2 = ω2 + δ.f2(ω2, τ2) (eδ2)
ω1 − ω2 = 0 (e3)
ω•1 = ω•2 (e•3)
τ1 + τ2 = 0 (e4)

(1)

Regard (1) as a transition system: for a given (ω1, ω2) satisfying (e3),
find (ω•1 , ω

•
2 , τ1, τ2) using eqns (eδ1 , e

δ
2 , e4).

We have 4 unknowns but only 3 eqns: structurally singular

8 / 37



The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

Mode γ = T: it is now a dAE system
ω•1 = ω1 + δ.f1(ω1, τ1) (eδ1)
ω•2 = ω2 + δ.f2(ω2, τ2) (eδ2)
ω1 − ω2 = 0 (e3)
ω•1 = ω•2 (e•3)
τ1 + τ2 = 0 (e4)

(2)

Regard (2) as an algebraic system of eqns: for a given (ω1, ω2) satisfying (e3),
find (ω•1 , ω

•
2 , τ1, τ2) using eqns (eδ1 , e

δ
2 , e
•
3 , e4): structurally nonsingular.

8 / 37



The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

Mode γ = T: it is now a DAE system
ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)
ω1 − ω2 = 0 (e3)
ω′1 = ω′2 (e′3)
τ1 + τ2 = 0 (e4)

(3)

Regard (3) as an algebraic system of eqns: for a given (ω1, ω2) satisfying (e3),
find (ω′1, ω

′
2, τ1, τ2) using eqns (e1, e2, e′3, e4): structurally nonsingular.

8 / 37



The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

Mode γ = T: it is now a DAE system
ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)
ω1 − ω2 = 0 (e3)
ω′1 = ω′2 (e′3)
τ1 + τ2 = 0 (e4)

(4)

I The structural analyses we performed

I in continuous time, and
I in discrete time using Euler schemes

mirror each other (this is a general fact)
8 / 37



The clutch example: mode transitions, difficulties



ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3)
and ω′1 − ω′2 = 0 (e′3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

I Guess: structural analysis in each mode is enough

I Problems:

I reset 6= initialization
(initialization has 1 degree of freedom in mode γ = T)

I transition released→ engaged has impulsive torques
(to adjust the rotation speeds in zero time)

The results obtained by Modelica and Mathematica are interesting

9 / 37



The clutch example: mode transitions, difficulties



ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3)
and ω′1 − ω′2 = 0 (e′3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

I Guess: structural analysis in each mode is enough

I Problems:

I reset 6= initialization
(initialization has 1 degree of freedom in mode γ = T)

I transition released→ engaged has impulsive torques
(to adjust the rotation speeds in zero time)

The results obtained by Modelica and Mathematica are interesting

9 / 37



The clutch example: mode transitions, difficulties



ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3)
and ω′1 − ω′2 = 0 (e′3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

I Guess: structural analysis in each mode is enough

I Problems:

I reset 6= initialization
(initialization has 1 degree of freedom in mode γ = T)

I transition released→ engaged has impulsive torques
(to adjust the rotation speeds in zero time)

The results obtained by Modelica and Mathematica are interesting

9 / 37



The clutch example: mode transitions, difficulties



ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3)
and ω′1 − ω′2 = 0 (e′3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

I Guess: structural analysis in each mode is enough

I Problems:

I reset 6= initialization
(initialization has 1 degree of freedom in mode γ = T)

I transition released→ engaged has impulsive torques
(to adjust the rotation speeds in zero time)

The results obtained by Modelica and Mathematica are interesting

9 / 37



The clutch in Modelica and Mathematica

Clutch



ω′1 = f1(ω1, τ1)
ω′2 = f2(ω2, τ2)

when γ do ω1 − ω2 = 0
and τ1 + τ2 = 0

when not γ do τ1 = 0
and τ2 = 0

Changes γ : F → T → F at t = 5, 10

When the clutch gets engaged, an impulsive
torque occurs if the two rotation speeds dif-
fered before the engagement. The common
speed after engagement should sit between
the two speeds before it.

10 / 37



The clutch in Modelica and Mathematica

Clutch in Modelica



ω′1 = f1(ω1, τ1)
ω′2 = f2(ω2, τ2)

when γ do ω1 − ω2 = 0
and τ1 + τ2 = 0

when not γ do τ1 = 0
and τ2 = 0

Changes γ : F → T → F at t = 5, 10

The following error was detected at time:
5.002
Error: Singular inconsistent scalar system
for f1 = ((if g then w1-w2 else 0.0))/(-(if
g then 0.0 else 1.0)) = -0.502621/-0
Integration terminated before reaching
"StopTime" at T = 5

model ClutchBasic
parameter Real w01=1;
parameter Real w02=1.5;
parameter Real j1=1;
parameter Real j2=2;
parameter Real k1=0.01;
parameter Real k2=0.0125;
parameter Real t1=5;
parameter Real t2=7;
Real t(start=0, fixed=true);
Boolean g(start=false);
Real w1(start = w01, fixed=true);
Real w2(start = w02, fixed=true);
Real f1;
Real f2;

equation
der(t) = 1;
g = (t >= t1) and (t <= t2);
j1*der(w1) = -k1*w1 + f1;
j2*der(w2) = -k2*w2 + f2;
0 = if g then w1-w2 else f1;
f1 + f2 = 0;

end ClutchBasic;

10 / 37



The clutch in Modelica and Mathematica

Clutch in Modelica



ω′1 = f1(ω1, τ1)
ω′2 = f2(ω2, τ2)

when γ do ω1 − ω2 = 0
and τ1 + τ2 = 0

when not γ do τ1 = 0
and τ2 = 0

Changes γ : F → T → F at t = 5, 10

The reason is that Dymola has symbolically
pivoted the system of equations, regardless
of the mode.
By doing so, it has produced an equation
defining f1 that is singular in mode g.

model ClutchBasic
parameter Real w01=1;
parameter Real w02=1.5;
parameter Real j1=1;
parameter Real j2=2;
parameter Real k1=0.01;
parameter Real k2=0.0125;
parameter Real t1=5;
parameter Real t2=7;
Real t(start=0, fixed=true);
Boolean g(start=false);
Real w1(start = w01, fixed=true);
Real w2(start = w02, fixed=true);
Real f1;
Real f2;

equation
der(t) = 1;
g = (t >= t1) and (t <= t2);
j1*der(w1) = -k1*w1 + f1;
j2*der(w2) = -k2*w2 + f2;
0 = if g then w1-w2 else f1;
f1 + f2 = 0;

end ClutchBasic;

10 / 37



The clutch in Modelica and Mathematica

Clutch in Mathematica



ω′1 = f1(ω1, τ1)
ω′2 = f2(ω2, τ2)

when γ do ω1 − ω2 = 0
and τ1 + τ2 = 0

when not γ do τ1 = 0
and τ2 = 0

Changes γ : F → T → F at t = 5, 10

The simulation does not crash but yields
meaningless results highly sensitive to little
variations of some parameters.
This suggests that a cold restart, not a reset,
is performed.

NDSolve[{
w1’[t] == -0.01 w1[t] + t1[t],
2 w2’[t] == -0.0125 w2[t] + t2[t],
t1[t] + t2[t] == 0,
s[t] (w1[t] - w2[t]) + (1 - s[t]) t1[t] == 0,
w1[0] == 1.0, w2[0] == 1.5, s[0] == 0,
WhenEvent[t == 5,

s[t] -> 1
] },

w1, w2, t1, t2,s,
t, 0, 7, DiscreteVariables -> s]

10 / 37



The clutch example
Separate analysis of each mode
The mode transitions: difficulties

The clutch example: a comprehensive approach
Nonstandard structural analysis
Back-Standardization
Results and code for the clutch

The Cup-and-Ball example: handling transient modes

Making this work in general
Structural analysis
Standardization

Further results
Escaping from standardization
What if we change the nonstandard representation of x ′?
Correctness of our notion of solution of multimode DAE

Conclusion

11 / 37



Overview of our approach

mdAEmDAE
domain

nonstandard
mapping to

causality analysis
latent equations

DAE model
continuous modes

reset equations
at events

standardization
impulse analysis
standardization

12 / 37



Nonstandard structural analysis

mDAE

DAE model
continuous modes

reset equations
at events

standardization
impulse analysis
standardization

causality analysis
latent equations

mdAE

mapping to
nonstandard

domain

13 / 37



Nonstandard analysis

I Nonstandard reals ?R ⊃ R: conservative extension offering infinitesimals
(smaller in size than any ε>0) and infinities; +,×, etc. extend to ?R

I Standardization: say x ≈ y if x − y is infinitesimal
Each finite x ∈ ?R has a unique standard part st(x) ∈ R such that x ≈ st(x)

I Nonstandard integers ?Z ⊃ Z: conservative extension offering infinities

Using it
I Pick ∂ > 0 infinitesimal and consider T = {n∂ | n ∈ ?Z}; T is both

I discrete: each n∂ has a predecessor (n−1)∂ and a successor (n+1)∂
I dense in R: each t ∈ R has a τ ∈ T such that t ≈ τ

I We will “faithfully” approximate multimode DAE systems by multimode dAE
systems over T; reverse mapping by performing standardization

I “faithful” means “up to an infinitesimal error”
I this way we unify continuous dynamics and mode changes

14 / 37



Nonstandard analysis

I Nonstandard reals ?R ⊃ R: conservative extension offering infinitesimals
(smaller in size than any ε>0) and infinities; +,×, etc. extend to ?R

I Standardization: say x ≈ y if x − y is infinitesimal
Each finite x ∈ ?R has a unique standard part st(x) ∈ R such that x ≈ st(x)

I Nonstandard integers ?Z ⊃ Z: conservative extension offering infinities

Using it
I Pick ∂ > 0 infinitesimal and consider T = {n∂ | n ∈ ?Z}; T is both

I discrete: each n∂ has a predecessor (n−1)∂ and a successor (n+1)∂
I dense in R: each t ∈ R has a τ ∈ T such that t ≈ τ

I We will “faithfully” approximate multimode DAE systems by multimode dAE
systems over T; reverse mapping by performing standardization

I “faithful” means “up to an infinitesimal error”
I this way we unify continuous dynamics and mode changes

14 / 37



Nonstandard structural analysis everywhere

∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model:

ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1 )
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2 )

when γ do ω1 − ω2 = 0 (e3)
and ω•1 − ω•2 = 0 (e•3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

Latent equations were added for each mode

15 / 37



Nonstandard structural analysis everywhere

∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model:

ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1 )
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2 )

when γ do ω1 − ω2 = 0 (e3)
and ω•1 − ω•2 = 0 (e•3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

Latent equations were added for each mode

This is ok for each of the two modes:

I γ=T: activate (e3, e•3 , e4) and disable (e5, e6)

I γ=F: disable (e3, e•3 , e4) and activate (e5, e6)

15 / 37



Nonstandard structural analysis everywhere

∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model:

ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1 )
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2 )

when γ do ω1 − ω2 = 0 (e3)
and ω•1 − ω•2 = 0 (e•3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

Latent equations were added for each mode

Structural conflict at mode change γ : F → T, between “past” and “present”: ω1 = •ω1 + ∂.f1(•ω1,
•τ1) (•e∂1 )

ω2 = •ω2 + ∂.f2(•ω2,
•τ2) (•e∂2 )

ω1 − ω2 = 0 (e3): inhibited

15 / 37



Nonstandard structural analysis everywhere

∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model:

ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1 )
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2 )

when γ do ω1 − ω2 = 0 (e3)
and ω•1 − ω•2 = 0 (e•3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

Latent equations were added for each mode

Structural conflict at mode change γ : F → T: ω1 = •ω1 + ∂.f1(•ω1,
•τ1) (•e∂1 )

ω2 = •ω2 + ∂.f2(•ω2,
•τ2) (•e∂2 )

ω1 − ω2 = 0 (e3): inhibited

Priority is given to the past: no UNDO

15 / 37



Nonstandard structural analysis everywhere

∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model:

ω1 = •ω1 + ∂.f1(•ω1,
•τ1) (•e∂1 )

ω2 = •ω2 + ∂.f2(•ω2,
•τ2) (•e∂2 )

ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1 )
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2 )

when γ do ω1 − ω2 = 0 (e3)
when iiiiiiitγ do ω•1 − ω•2 = 0 (e•3)

and τ1 + τ2 = 0 (e4)

Resulting code at mode change γ : F → T:

I context inherited from the past

I latent equations

I other equations

I (e3) inhibited

15 / 37



Nonstandard structural analysis: summary

1. Each continuous mode comes with its own structural analysis

2. Conflicts may occur at mode changes, between:
I state predictions from the previous mode, and
I consistency conditions of the current mode

3. Resolve such possible conflicts by removing, at the instant of mode
change, the consistency equations conflicting with the predictions
from previous mode

I As a result, conflicts are postponed for finitely many nonstandard
instants (which accounts for zero standard time)

16 / 37



Back-Standardization

time:?R; both x•, x ′

mdAEmDAE
domain

nonstandard
mapping to

causality analysis
latent equations

impulse analysis
standardizationstandardization

DAE model reset equations
at eventscontinuous modes

time: R; derivatives x ′ time: discrete; shifts x•

17 / 37



Back-Standardization

∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model:

ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1 )
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2 )

when γ do ω1 − ω2 = 0 (e3)
and ω•1 − ω•2 = 0 (e•3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

OK inside each individual mode:

I Apply usual continuous time structural analysis for each mode, separately

I This can be justified by the standardization of the nonstandard model, which
consists in moving backward, from nonstandard Euler scheme to DAE

I The usual numerical schemes for DAE can then be applied

18 / 37



Back-Standardization

∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model:
ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1 )
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2 )
ω•1 − ω•2 = 0 (e•3)
τ1 + τ2 = 0 (e4)

This is the nonstandard dynamics at mode change γ : F → T.

How to map it to effective code?

I again by standardization, by, however

I targeting discrete time dynamics (for stepwise computing restart values)

I the issue: getting rid of the infinitesimal ∂ acting in space in (e∂1 , e
∂
2 )

Let us proceed for the simple case where fi(ωi , τi) = aiωi + biτi

18 / 37



Back-Standardization

∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model: ω•1 = ω1 + ∂(a1ω1 + b1τ) (e∂1 )
ω•2 = ω2 + ∂(a2ω2 − b2τ) (e∂2 )
ω•1 − ω•2 = 0 (e•3)

1st step: impulse analysis:

I Since ∂ occurs in (e∂1 , e
∂
2 ), ω

•
1 − ω•2 = 0 and ω1 − ω2 6= 0 together require

either (a1ω1 + b1τ) or (a2ω2 − b2τ) to be infinite (in nonstandard setting)

I Requires τ to be infinite, expressing that τ is impulsive

18 / 37



Back-Standardization

∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model: ω•1 = ω1 + ∂(a1ω1 + b1τ) (e∂1 )
ω•2 = ω2 + ∂(a2ω2 − b2τ) (e∂2 )
ω•1 − ω•2 = 0 (e•3)

2nd step: eliminating impulsive variables:

I Since ∂ occurs in (e∂1 , e
∂
2 ), ω

•
1 − ω•2 = 0 and ω1 − ω2 6= 0 together require

either (a1ω1 + b1τ) or (a2ω2 − b2τ) to be infinite (in nonstandard setting)

I Requires τ to be infinite, expressing that τ is impulsive

I We cannot directly set ∂ ← 0 because this yields a singular system

⇒ Need to eliminate τ . Having done this, setting ω• =def ω
•
1 = ω•2 , we get:

(b1 + b2)ω
• = b2(1+∂.a1)ω1 + b1(1+∂.a2)ω2

18 / 37



Back-Standardization

∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model: ω•1 = ω1 + ∂(a1ω1 + b1τ) (e∂1 )
ω•2 = ω2 + ∂(a2ω2 − b2τ) (e∂2 )
ω•1 − ω•2 = 0 (e•3)

3rd step: perform safe standardization of

(b1 + b2)ω
• = b2(1+∂.a1)ω1 + b1(1+∂.a2)ω2

Now we can safely set ∂ ← 0, which yields

(b1 + b2)ω
• = b2ω

−
1 + b1ω2

⇒ reset equation (b1 + b2)ω
+ = b2ω

−
1 + b1ω

−
2

18 / 37



Results and code for the clutch: structural analysis

ω1, ω2start

γ, ω1, ω2,
e3, e4

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂1 , e
∂
2 , e3,

e4, e5, e6

γ, ω1, ω2,
e5, e6

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂1 , e
∂
2 , e
•
3 ,

e4, e5, e6

ω1, ω2, ]e3

γ, ω1, ω2,
e3, e4

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂1 , e
∂
2 , e3,

e4, e5, e6

γ, ω1, ω2,
e3, e5, e6

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂1 , e
∂
2 , e3, e•3 ,

e4, e5, e6

γ; e3; e4

γ; e5; e6

e5; e6;
e∂1 ; e

∂
2

Tick

e∂1 + e∂2 + e•3 + e4

Tickγ; e3; e4

γ; e5; e6;PR(e3)

e5; e6; e∂1 ; e
∂
2

Tick

e∂1 + e∂2+
e•3 + e4

Tick

19 / 37



Results and code for the clutch: standardization

mode ¬γ : index 0
τ1 = 0; τ2 = 0;
ω′1 = a1ω1 + b1τ1;
ω′2 = a2ω2 + b2τ2

start

mode γ : index 1
τ1 = (a2ω2 − a1ω1)/(b1 + b2); τ2 = −τ1;
ω′1 = a1ω1 + b1τ1; ω

′
2 = a2ω2 + b2τ2;

constraint ω1 − ω2 = 0

when γ do
τ1 = NaN; τ2 = NaN;

ω+
1 = ω+

2 =
b2ω

−
1 + b1ω

−
2

b1 + b2
done

when ¬γ do
τ1 = 0; τ2 = 0;
ω+

1 = ω−1 ;
ω+

2 = ω−2
done

20 / 37



Results and code for the clutch: simulation results

mode changes γ : F → T → F at t = 5, 10

21 / 37



The clutch example
Separate analysis of each mode
The mode transitions: difficulties

The clutch example: a comprehensive approach
Nonstandard structural analysis
Back-Standardization
Results and code for the clutch

The Cup-and-Ball example: handling transient modes

Making this work in general
Structural analysis
Standardization

Further results
Escaping from standardization
What if we change the nonstandard representation of x ′?
Correctness of our notion of solution of multimode DAE

Conclusion

22 / 37



The Cup-and-Ball example
0 = x ′′ + λx (e1) x ′′ ← x•2−2x•+x

∂2

0 = y ′′ + λy + g (e2)
0 ≤ L2−(x2+y2) (κ1)
0 ≤ λ (κ2)
0 =

[
L2−(x2+y2)

]
× λ (κ3)

0 = x ′′ + λx (e1)
0 = y ′′ + λy + g (e2)
γ = [s ≤ 0] (κ0)

when γ do 0 = L2−(x2+y2) (κ1)
and 0 = λ+ s (κ2)

when not γ do 0 = λ (κ3)
and 0 = (L2−(x2+y2))− s (κ4)

23 / 37



The Cup-and-Ball example
0 = x ′′ + λx (e1) x ′′ ← x•2−2x•+x

∂2

0 = y ′′ + λy + g (e2)
0 ≤ L2−(x2+y2) (κ1)
0 ≤ λ (κ2)
0 =

[
L2−(x2+y2)

]
× λ (κ3)

0 = x ′′ + λx (e1)
0 = y ′′ + λy + g (e2)
γ = [s ≤ 0] (κ0)

when γ do 0 = L2−(x2+y2) (κ1)
and 0 = λ+ s (κ2)

when not γ do 0 = λ (κ3)
and 0 = (L2−(x2+y2))− s (κ4)

Summary:

1. Causality problem: must redefine γ = [s− ≤ 0]

2. Corrected model accepted, with index 2/0 for mode γ = T/F

3. New difficulty related to the kind of impact model inelastic/elastic

23 / 37



The Cup-and-Ball example
0 = x ′′ + λx (e1) x ′′ ← x•2−2x•+x

∂2

0 = y ′′ + λy + g (e2)
0 ≤ L2−(x2+y2) (κ1)
0 ≤ λ (κ2)
0 =

[
L2−(x2+y2)

]
× λ (κ3)

0 = x ′′ + λx (e1)
0 = y ′′ + λy + g (e2)
γ = [s ≤ 0] (κ0)

when γ do 0 = L2−(x2+y2) (κ1)
and 0 = λ+ s (κ2)

when not γ do 0 = λ (κ3)
and 0 = (L2−(x2+y2))− s (κ4)

I The mode is defined by γ, which depends on s, whose evaluation is guarded
by γ: causality circuit prevents from evaluating γ; see what can be evaluated

I At initialization of instant, only (e1), (e2) are active, with 3 dependent
variables λ, x•2, y•2: underdetermination⇒ model rejected at compile time

I Solution: breaking the circuit

23 / 37



The Cup-and-Ball example
0 = x ′′ + λx (e1) x ′′ ← x•2−2x•+x

∂2

0 = y ′′ + λy + g (e2)
0 ≤ L2−(x2+y2) (κ1)
0 ≤ λ (κ2)
0 =

[
L2−(x2+y2)

]
× λ (κ3)

0 = x ′′ + λx (e1)
0 = y ′′ + λy + g (e2)
γ• = [s ≤ 0]; γ(0) = F (κ0)

when γ do 0 = L2−(x2+y2) (κ1)
and 0 = λ+ s (κ2)

when not γ do 0 = λ (κ3)
and 0 = (L2−(x2+y2))− s (κ4)

I Note that the mode is known at the beginning of the instant

I γ = F: (e1, e2, κ3, κ4) is an ODE system; easy

I γ = T: (e1, e2, κ1, κ2) is a DAE; (κ1) must be shifted twice (index 2)

23 / 37



The Cup-and-Ball example
0 = x ′′ + λx (e1) x ′′ ← x•2−2x•+x

∂2

0 = y ′′ + λy + g (e2)
0 ≤ L2−(x2+y2) (κ1)
0 ≤ λ (κ2)
0 =

[
L2−(x2+y2)

]
× λ (κ3)

0 = x ′′ + λx (e1)
0 = y ′′ + λy + g (e2)
γ• = [s ≤ 0]; γ(0) = F (κ0)

when γ do 0 = L2−(x2+y2) (κ1)
and 0 = L2−(x2+y2)• (κ•1 )
and 0 = L2−(x2+y2)•2 (κ•2

1 )
and 0 = λ+ s (κ2)

when not γ do 0 = λ (κ3)
and 0 = (L2−(x2+y2))− s (κ4)

I γ = F: (e1, e2, κ3, κ4) is an ODE system; easy

I γ = T: (e1, e2, κ1, κ2) is a DAE; (κ1) must be shifted twice (index 2)

I (e1, e2, κ
•2
1 , κ2) is structurally nonsingular;

I solve conflicts possibly caused by (κ1), (κ
•
1) as for the clutch example

23 / 37



The Cup-and-Ball example
0 = x ′′ + λx (e1) x ′′ ← x•2−2x•+x

∂2

0 = y ′′ + λy + g (e2)
0 ≤ L2−(x2+y2) (κ1)
0 ≤ λ (κ2)
0 =

[
L2−(x2+y2)

]
× λ (κ3)

0 = x ′′ + λx (e1)
0 = y ′′ + λy + g (e2)
γ• = [s ≤ 0]; γ(0) = F (κ0)

when γ do 0 = L2−(x2+y2) (κ1)
and 0 = L2−(x2+y2)• (κ•1 )
and 0 = L2−(x2+y2)•2 (κ•2

1 )
and 0 = λ+ s (κ2)

when not γ do 0 = λ (κ3)
and 0 = (L2−(x2+y2))− s (κ4)

I Resulting code keeps the rope straight until tension λ reaches zero:
inelastic impact—yet, this was not explicitly specified!

I How can we capture elastic impact? In this case, the mode γ = T is
transient (zero duration): prohibits the consideration of (κ•21 ). MMMhhhhh??

23 / 37



The Cup-and-Ball example: transient mode γ:F→T→F



0 = x ′′ + λx (e1) (e1) (e1)
0 = y ′′ + λy + g (e2) (e2) (e2)
γ• = [s ≤ 0]; γ(0) = F (κ0)

when γ do 0 = L2−(x2+y2) (κ1) (κ1)
and 0 = λ+ s (κ2) (κ2)

when not γ do 0 = λ (κ3) (κ3)
and 0 = (L2−(x2+y2))− s (κ4) (κ4)

S(T) S(F)

1. Replace our technique of index reduction by the consideration of

array An =
[
S(T),S•(F),S•2(F), . . . ,S•n(F)

]
2. Find n such that An determines leading variables λ, s, x•2, y•2 ?

3. Alas, no such n exists, since S•(F),S•2(F), . . . , are all ODE systems

The above model is underspecified at mode γ = T in cascade γ : F, T, F, F . . .

24 / 37



The Cup-and-Ball example: transient mode γ:F→T→F



0 = x ′′ + λx (e1) (e1) (e1)
0 = y ′′ + λy + g (e2) (e2) (e2)
γ• = [s ≤ 0]; γ(0) = F (κ0)

when γ do 0 = L2−(x2+y2) (κ1) (κ1)
and 0 = λ+ s (κ2) (κ2)

when not γ do 0 = λ (κ3) (κ3)
and 0 = (L2−(x2+y2))− s (κ4) (κ4)

S(T) S(F)

1. Replace our technique of index reduction by the consideration of

array An =
[
S(T),S•(F),S•2(F), . . . ,S•n(F)

]
2. Find n such that An determines leading variables λ, s, x•2, y•2 ?

3. Alas, no such n exists, since S•(F),S•2(F), . . . , are all ODE systems

The above model is underspecified at mode γ = T in cascade γ : F, T, F, F . . .

24 / 37



The Cup-and-Ball example: transient mode γ:F→T→F

Discussion

I Mode γ = T having > 0 duration means inelastic impact

I We return to the user the info: if mode γ = T is transient, then it is
incompletely specified (restart values for the next mode γ = F are missing)

I User specifies impact law on velocities⇒ compilation succeeds

I For transient modes, replace index reduction by the (time-varying) array A
and otherwise reuse the same algorithm for handling conflicts between
previous and current nonstandard instants

I The information {nontransient / transient} must be specified by the user
as it is physical knowledge that the compiler cannot infer

I We expect a practical modeling language to provide different primitives
for the two cases (e.g., “if” for a long mode vs. “when” for an event)

25 / 37



The Cup-and-Ball example: transient mode γ:F→T→F

Discussion

I Mode γ = T having > 0 duration means inelastic impact

I We return to the user the info: if mode γ = T is transient, then it is
incompletely specified (restart values for the next mode γ = F are missing)

I User specifies impact law on velocities⇒ compilation succeeds

I For transient modes, replace index reduction by the (time-varying) array A
and otherwise reuse the same algorithm for handling conflicts between
previous and current nonstandard instants

I The information {nontransient / transient} must be specified by the user
as it is physical knowledge that the compiler cannot infer

I We expect a practical modeling language to provide different primitives
for the two cases (e.g., “if” for a long mode vs. “when” for an event)

25 / 37



The Cup-and-Ball example: transient mode γ:F→T→F

Discussion

I Mode γ = T having > 0 duration means inelastic impact

I We return to the user the info: if mode γ = T is transient, then it is
incompletely specified (restart values for the next mode γ = F are missing)

I User specifies impact law on velocities⇒ compilation succeeds

I For transient modes, replace index reduction by the (time-varying) array A
and otherwise reuse the same algorithm for handling conflicts between
previous and current nonstandard instants

I The information {nontransient / transient} must be specified by the user
as it is physical knowledge that the compiler cannot infer

I We expect a practical modeling language to provide different primitives
for the two cases (e.g., “if” for a long mode vs. “when” for an event)

25 / 37



The clutch example
Separate analysis of each mode
The mode transitions: difficulties

The clutch example: a comprehensive approach
Nonstandard structural analysis
Back-Standardization
Results and code for the clutch

The Cup-and-Ball example: handling transient modes

Making this work in general
Structural analysis
Standardization

Further results
Escaping from standardization
What if we change the nonstandard representation of x ′?
Correctness of our notion of solution of multimode DAE

Conclusion

26 / 37



Structural analysis: the Σ-method [Pryce2001]

Consider DAE F = 0: fj(the xi and their derivatives) = 0 for i, j = 1, . . . , n

I GF weighted bipartite graph of F

(f , n, x) ∈ GF iff x has differentiation degree n in function f ; let dfx := n

I Find a complete matchingM⊆ GF (bijection F 7→ X )

and integer offsets (cf )f∈F and (dx)x∈X , such that

dx − cf ≥ dfx with equality iff (f , dfx , x) ∈M
cf ≥ 0

(†)

I Differentiating cf times each f yields an algebraic system of equations
FΣ(leading/other vars) = 0 that is structurally nonsingular with respect to
leading variables (FΣ is equivalent to an ODE)

I John Pryce found a linear programming problem equivalent to (†)

27 / 37



Structural analysis: the Σ-method [Pryce2001]

Consider DAE F = 0: fj(the xi and their derivatives) = 0 for i, j = 1, . . . , n

I GF weighted bipartite graph of F

(f , n, x) ∈ GF iff x has differentiation degree n in function f ; let dfx := n

I Find a complete matchingM⊆ GF (bijection F 7→ X )

and integer offsets (cf )f∈F and (dx)x∈X , such that

dx − cf ≥ dfx with equality iff (f , dfx , x) ∈M
cf ≥ 0

(†)

I Differentiating cf times each f yields an algebraic system of equations
FΣ(leading/other vars) = 0 that is structurally nonsingular with respect to
leading variables (FΣ is equivalent to an ODE)

I John Pryce found a linear programming problem equivalent to (†)

27 / 37



Structural analysis: the Σ-method [Pryce2001]

Consider DAE F = 0: fj(the xi and their derivatives) = 0 for i, j = 1, . . . , n

I GF weighted bipartite graph of F

(f , n, x) ∈ GF iff x has differentiation degree n in function f ; let dfx := n

I Find a complete matchingM⊆ GF (bijection F 7→ X )

and integer offsets (cf )f∈F and (dx)x∈X , such that

dx − cf ≥ dfx with equality iff (f , dfx , x) ∈M
cf ≥ 0

(†)

I Differentiating cf times each f yields an algebraic system of equations
FΣ(leading/other vars) = 0 that is structurally nonsingular with respect to
leading variables (FΣ is equivalent to an ODE)

I John Pryce found a linear programming problem equivalent to (†)

27 / 37



Solving conflicts between past and present

1. W dependent variables in: F (W ,X ) = F past(W ,X ) ] F pres(W ,X )

2. Dulmage-Mendelsohn decomposition:

F = FH︸ ︷︷ ︸
underdetermined

] FS︸ ︷︷ ︸
regular

] FV︸ ︷︷ ︸
overdetermined

3. In F , replace FV ← FV \ F pres

Thm: ⇒ F past has no overdetermined part
Thm: ⇒ F reduced has no overdetermined part

This solves the conflict

4. The final question is: is the so reduced F structurally regular?

I Yes: we solve F=0
I No: the model lacks information and we inform the designer

28 / 37



Solving conflicts between past and present

1. W dependent variables in: F (W ,X ) = F past(W ,X ) ] F pres(W ,X )

2. Dulmage-Mendelsohn decomposition:

F = FH︸ ︷︷ ︸
underdetermined

] FS︸ ︷︷ ︸
regular

] FV︸ ︷︷ ︸
overdetermined

3. In F , replace FV ← FV \ F pres

Thm: ⇒ F past has no overdetermined part
Thm: ⇒ F reduced has no overdetermined part

This solves the conflict

4. The final question is: is the so reduced F structurally regular?

I Yes: we solve F=0
I No: the model lacks information and we inform the designer

28 / 37



Solving conflicts between past and present

1. W dependent variables in: F (W ,X ) = F past(W ,X ) ] F pres(W ,X )

2. Dulmage-Mendelsohn decomposition:

F = FH︸ ︷︷ ︸
underdetermined

] FS︸ ︷︷ ︸
regular

] FV︸ ︷︷ ︸
overdetermined

3. In F , replace FV ← FV \ F pres

Thm: ⇒ F past has no overdetermined part
Thm: ⇒ F reduced has no overdetermined part

This solves the conflict

4. The final question is: is the so reduced F structurally regular?

I Yes: we solve F=0
I No: the model lacks information and we inform the designer

28 / 37



Standardization

I Inside continuous modes, easy:

I target continuous time, map backward x•−x
∂ 7→ x ′

I At mode changes, more difficult:

I We target discrete time and must get rid of ∂ in space in: x• = x + ∂x ′

I If there are impulsive variables, setting ∂ = 0 yields a structurally
singular system. Hence we proceed as follows:

1. We identify impulsive variables by performing impulse analysis
and then eliminate them (if possible)

2. Having done this we can safely set ∂ = 0 and produce the code
that computes restart values for non impulsive variables (enough)

I Alternatively, we solve the algebraic system with ∂ := δ positive small;
Thm: the non impulsive variables converge to their due restart values

29 / 37



Standardization

I Inside continuous modes, easy:

I target continuous time, map backward x•−x
∂ 7→ x ′

I At mode changes, more difficult:

I We target discrete time and must get rid of ∂ in space in: x• = x + ∂x ′

I If there are impulsive variables, setting ∂ = 0 yields a structurally
singular system. Hence we proceed as follows:

1. We identify impulsive variables by performing impulse analysis
and then eliminate them (if possible)

2. Having done this we can safely set ∂ = 0 and produce the code
that computes restart values for non impulsive variables (enough)

I Alternatively, we solve the algebraic system with ∂ := δ positive small;
Thm: the non impulsive variables converge to their due restart values

29 / 37



Standardization

I Inside continuous modes, easy:

I target continuous time, map backward x•−x
∂ 7→ x ′

I At mode changes, more difficult:

I We target discrete time and must get rid of ∂ in space in: x• = x + ∂x ′

I If there are impulsive variables, setting ∂ = 0 yields a structurally
singular system. Hence we proceed as follows:

1. We identify impulsive variables by performing impulse analysis
and then eliminate them (if possible)

2. Having done this we can safely set ∂ = 0 and produce the code
that computes restart values for non impulsive variables (enough)

I Alternatively, we solve the algebraic system with ∂ := δ positive small;
Thm: the non impulsive variables converge to their due restart values

29 / 37



Standardization

I Inside continuous modes, easy:

I target continuous time, map backward x•−x
∂ 7→ x ′

I At mode changes, more difficult:

I We target discrete time and must get rid of ∂ in space in: x• = x + ∂x ′

I If there are impulsive variables, setting ∂ = 0 yields a structurally
singular system. Hence we proceed as follows:

1. We identify impulsive variables by performing impulse analysis
and then eliminate them (if possible)

2. Having done this we can safely set ∂ = 0 and produce the code
that computes restart values for non impulsive variables (enough)

I Alternatively, we solve the algebraic system with ∂ := δ positive small;
Thm: the non impulsive variables converge to their due restart values

29 / 37



The clutch example
Separate analysis of each mode
The mode transitions: difficulties

The clutch example: a comprehensive approach
Nonstandard structural analysis
Back-Standardization
Results and code for the clutch

The Cup-and-Ball example: handling transient modes

Making this work in general
Structural analysis
Standardization

Further results
Escaping from standardization
What if we change the nonstandard representation of x ′?
Correctness of our notion of solution of multimode DAE

Conclusion

30 / 37



Escaping from standardization

Standardization at mode changes is a demanding compilation step. It requires
identifying impulsive variables and eliminating them, which requires computer
algebraic manipulations. This is costly beyond linear systems, and even
impossible in some cases. Can we avoid it? Yes, we can!

1. Nonstandard dynamics at mode change γ : F → T for the clutch:
ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1 )
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2 )
ω•1 − ω•2 = 0 (e•3)
τ1 + τ2 = 0 (e4)

2. Make it standard by substituting ∂ ← δ where δ > 0 is standard and small.
Solving for ω•1 , ω

•
2 , τ1, τ2 yields ω•1 (δ), ω

•
2 (δ), τ1(δ), τ2(δ).

3. Thm: ω•1 (δ), ω
•
2 (δ) converge to ω+

1 , ω
+
2 when δ → 0.

Hint: Rescale impulsive variables τ1, τ2 to improve conditioning: τ̂i = δ × τi .

31 / 37



Escaping from standardization

Standardization at mode changes is a demanding compilation step. It requires
identifying impulsive variables and eliminating them, which requires computer
algebraic manipulations. This is costly beyond linear systems, and even
impossible in some cases. Can we avoid it? Yes, we can!

1. Nonstandard dynamics at mode change γ : F → T for the clutch:
ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1 )
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2 )
ω•1 − ω•2 = 0 (e•3)
τ1 + τ2 = 0 (e4)

2. Make it standard by substituting ∂ ← δ where δ > 0 is standard and small.
Solving for ω•1 , ω

•
2 , τ1, τ2 yields ω•1 (δ), ω

•
2 (δ), τ1(δ), τ2(δ).

3. Thm: ω•1 (δ), ω
•
2 (δ) converge to ω+

1 , ω
+
2 when δ → 0.

Hint: Rescale impulsive variables τ1, τ2 to improve conditioning: τ̂i = δ × τi .

31 / 37



What if we change nonstandard representation of x ′?

We used the following nonstandard representation of the derivative:

x ′ ← x• − x
∂

We could, however, use equally well

x ′ ← 1
∂

∑
n

αn (x• − x)•n where
∑

n

αn = 1

Thm: The code we generate does not depend on the particular (αn)M≤n≤N

32 / 37



About our notion of solution of multimode DAE

How to compare the solutions we construct with other definitions?

I Problem: there is no mathematical definition for what a solution of multimode
DAE system is, in the general case

I So we are unable to qualify the solutions we construct, in the general case

I Still, we have such results for a particular (nontrivial) subclass of multimode
DAE systems, possibly involving impulsive behaviors at mode changes

I This subclass was recently identified by Hilding Elmqvist and Martin Otter,
we call it the semi-linear multimode DAE systems. This subclass contains in
particular multibody mechanics with contact.

I For semi-linear multimode DAE systems, we prove that our approach
actually implements the same schemes as the ones that were directly
derived by Elmqvist-Otter.

33 / 37



About our notion of solution of multimode DAE

How to compare the solutions we construct with other definitions?

I Problem: there is no mathematical definition for what a solution of multimode
DAE system is, in the general case

I So we are unable to qualify the solutions we construct, in the general case

I Still, we have such results for a particular (nontrivial) subclass of multimode
DAE systems, possibly involving impulsive behaviors at mode changes

I This subclass was recently identified by Hilding Elmqvist and Martin Otter,
we call it the semi-linear multimode DAE systems. This subclass contains in
particular multibody mechanics with contact.

I For semi-linear multimode DAE systems, we prove that our approach
actually implements the same schemes as the ones that were directly
derived by Elmqvist-Otter.

33 / 37



Semi-linear multimode DAE systems
Def:[Elmqvist-Otter2017] For each mode µ, the active DAE system takes the form{

0 = A(Xs)X ′ + Bµ(X )
0 = Cµ(X )

, where

I matrix A(Xs) is mode-independent and Xs) are the smooth components of X

I A(.),Bµ(.),Cµ(.) are smooth functions of their arguments

I The following Jacobian with respect to X is regular:[
A(Xs)
C′µ(X )

]
Thm:[Elmqvist-Otter2017] At mode changes, the restart conditions X + are
determined from the left-limits X− by using the following scheme:{

0 = A(X−s )(X + − X−)
0 = Cµ+(X +)

Thm: The above scheme actually coincides with our method.

34 / 37



The clutch example
Separate analysis of each mode
The mode transitions: difficulties

The clutch example: a comprehensive approach
Nonstandard structural analysis
Back-Standardization
Results and code for the clutch

The Cup-and-Ball example: handling transient modes

Making this work in general
Structural analysis
Standardization

Further results
Escaping from standardization
What if we change the nonstandard representation of x ′?
Correctness of our notion of solution of multimode DAE

Conclusion

35 / 37



Concluding remarks

We proposed a systematic approach

I for the compilation of multimode DAE system models,

I from source specification to simulation code

Our approach is physics-agnostics

I better than multi-physics?

36 / 37



Concluding remarks

Our structural analysis rejects some spurious models:

I overconstrained (within modes or at mode changes)

I underspecified (some missing information at restart events)

I causality cycle: var→guard→eqn→var,

a logical/numerical fixpoint equation that we do not support
(a new issue arising in multi-mode systems)

alternative for some cases: nonsmooth systems solvers
handling complementarity conditions directly (V. Acary)

36 / 37



Concluding remarks

We rely on nonstandard analysis

I to formalize structural analysis everywhere
(long and transient modes, and mode changes)

I to justify final code generation — standardization was essential, even
if not used in practice

Some numerical difficulties remain:

I chattering, sliding modes
I nonlinear equations at restart events (we have no close guess)

How does this compare with existing approaches?
(for some subclasses of systems)

I Answer was given for the semi-linear systems (⊇ contact mechanics)

36 / 37



Concluding remarks

Computational efficiency? Not addressed in this talk

Two alternative approaches:

I At each instant,

1. evaluate all guards and then

2. perform run time mode dependent structural analysis [Trenn][Höger]

I Perform compile time mode dependent structural analysis,
by not enumerating the modes

Next talk by Benoit Caillaud

36 / 37



nonstandard problems
require

nonstandard solutions

37 / 37


	The clutch example
	Separate analysis of each mode
	The mode transitions: difficulties

	The clutch example: a comprehensive approach
	Nonstandard structural analysis
	Back-Standardization
	Results and code for the clutch

	The Cup-and-Ball example: handling transient modes
	Making this work in general
	Structural analysis
	Standardization

	Further results
	Escaping from standardization
	What if we change the nonstandard representation of x'?
	Correctness of our notion of solution of multimode DAE

	Conclusion
	z1.pdf
	Structural Analysis of DAE
	The IsamDAE tool and the MEL language
	Functional encoding of the structure of a mDAE
	Structural Analysis
	Dependencies and scheduling
	The RLDC2 example
	Live demo
	Conclusion

	z2.pdf
	Structural Analysis of DAE
	The IsamDAE tool and the MEL language
	Functional encoding of the structure of a mDAE
	Structural Analysis
	Dependencies and scheduling
	The RLDC2 example
	Live demo
	Conclusion


