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Basic issues in probabilistic paradigms

Specifying a probabilistic system

I A probability distribution (Bernoulli, Gaussian,. . . )
I A dynamical system: Markov Chain, HMM, Markov Decision

Process, time series,
I CPS subject to random excitation and measurement noise
I Safety analyses,. . .

Issues
I Blending probabilities and nondeterminism
I Modular specification:

I graphical models
I OO (like in SW eng)
I parallel composition

I Conservative extension of reactive systems



Basic issues in probabilistic paradigms

Estimating, learning, inferring

I The parameters of a probability distribution (Bernoulli,. . . )
I The parameters of a dynamical system: Markov Chain,. . .
I An i/o-map (parametric and nonparametric — neural networks)
I The value of some unobserved signal, knowing some

observations (filtering and smoothing)

Issues
I Modular specification:

I Bayesian reasoning & Bayesian networks; Graphical models

I Blending probabilities and nondeterminism
I Estimation/learning/inference algorithms



Basic issues in probabilistic paradigms

Statistical decision and detection, classification

I decide whether P ∈ P1 or P ∈ P2,
I where P1,P2 are two disjoint sets of proba distributions;
I Ex: decide if the mean of a Gaussian variable is < 0 or > 0

I detect when Pt , t ∈ R jumps from P1 to P2,
I where Pt is the distribution of some random signal Xt , t ∈ R
I Ex: detect when the mean of a Gauss signal jumps from < 0 to > 0

Issues
I Modular specification:

I Bayesian reasoning & Bayesian networks; Graphical models
I Classification?

I Blending probabilities and nondeterminism
I Decision, detection, and classification algorithms



Basic issues in probabilistic paradigms

Requirements on Probabilistic Programming of React. Syst.

A use case related to safety analysis

Approaches
Statisticians and AI people
SW engineering style: Katoen 2017
Reactive Programming: ProbZelus
I have a dream

Probabilistic models
Existing approaches (PA and variations)
Alternative idea for the probabilistic parallel composition

Mixed (static) Systems (MS) [Benveniste et al.1995]

Details

Mixed Markov Decision Processes (MMDP)

Link between MMDP and PA [Segala et al.]

Probabilistic Interface Theory (sketch)



Requirements on Probabilistic Programming

I Probabilistic programming: offer a high-level language for the
I specification
I estimation
I decision/detection/classification

of systems involving a mix of proba and nondeterminism

I Supporting important nontrivial constructions:
I Conditioning: π(A | B) =def

π(A∩B)
π(B) provided that π(B) > 0

I Modularity in specification, estimation, and decision:
I Graphical models & Bayesian network reasoning

(generalizations of Bayes rule P(X ,Y ) = P(X)P(Y |X))
I Parallel composition

I Hosting libraries of algorithms for estimation and decision

I Providing a layered language for supporting all of this
(a conservative extension of a synchronous language)
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Advantages of a layered language

3 layers:

I a probabilistic system
I semantics, equivalence, rewriting rules

I a statistical problem (probability of some property, sampling,
estimating, detecting, classifying,. . . )

I semantics, equivalence, rewriting rules

I algorithms for solving statistical problems
∼ operational semantics
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A Modelica model
An abstraction of it

(nondeterministic relations)



A Modelica model
A safety model

with fault injection

𝜋𝜋1

𝜋𝜋2



A Modelica model
A safety model

with fault injection

Objectives:
• Semantic link maintained between detailed and abstract model
• Semantic link maintained with safety model

𝜋𝜋1

𝜋𝜋2



A Modelica model
A safety model

with fault injection

𝜋𝜋3

𝜋𝜋4

𝜋𝜋1

𝜋𝜋2

Objectives:
• Semantic link maintained between detailed and abstract model
• Semantic link maintained with safety model
• Modularity
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Existing approaches by statisticians and AI people

Pragmatic proposals by statisticians and AI people, on top of C++

I BUGS [Spiegelhalter 1994]: a software package for Bayesian

inference using Gibbs sampling. The software has been instrumental in

raising awareness of Bayesian modelling among both academic and

commercial communities internationally, and has enjoyed considerable

success over its 20-year life span. 2009

I Stan [Carpenter 2017]: Stan is a probabilistic programming language

for specifying statistical models. A Stan program imperatively defines a log

probability function over parameters conditioned on specified data and

constants. As of version 2.14.0, Stan provides full Bayesian inference for

continuous-variable models through Markov chain Monte Carlo methods

such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte

Carlo sampling. Penalized maximum likelihood estimates are calculated

using optimization methods such as the limited memory

Broyden-Fletcher-Goldfarb-Shanno algorithm.



Existing approaches [Katoen 2017]

1. skip empty statement

2. abort abortion

3. x := E assignment

4. observe (G) conditioning (value of G known)

5. prog1 ; prog2 sequential composition

6. if (G) prog1 else prog2 choice

7. prog1 [p] prog2 probabilistic choice

8. while (G) prog iteration

I Statement 4 specifies conditional probabilities
I Statement 7 is low level and is not a parallel composition
I Support for modularity: statements 5,6,7



Existing approaches [Katoen 2017]

1. skip empty statement

2. abort abortion

3. x := E assignment

4. observe (G) conditioning (value of G known)

5. prog1 ; prog2 sequential composition

6. if (G) prog1 else prog2 choice

7. prog1 [p] prog2 probabilistic choice

8. while (G) prog iteration

I Mostly OO oriented, not for reactive systems
I No parallel composition
I Nicely layered: this is a specification language
I ∃ support for solving statistical problems. Not well layered.



Reactive Programming: ProbZelus [Baudart 2019]

d ::= let node f x = e | d d

e ::= c | x | (e, e) | op(e) | f (e) | last x | e where rec E
c | present e→ e else e | reset e every e
c | sample e | observe e | factor e | infer e

E ::= () | x = e | init x = c | E and E

I Zelus: a reactive (synchronous) language of streams of data

I Probabilistic extension:
I rec x = sample(gaussian(0->pre x, 1)) x ∼ N(pre(x), 1)

I observe (gaussian(x, 1), y) y ∼ N(x , 1)

I factor(e)⇔ observe(Exp(1), -e)
I infer(e) estimates current proba distrib of e knowing the past



Reactive Programming: ProbZelus [Baudart 2019]

d ::= let node f x = e | d d

e ::= c | x | (e, e) | op(e) | f (e) | last x | e where rec E
c | present e→ e else e | reset e every e
c | sample e | observe e | factor e | infer e

E ::= () | x = e | init x = c | E and E

Some comments:
I Conservative extension of discrete time Zelus
I Interesting type system proba/nonproba
I Interesting causality analysis
I Layered????



I have a dream

system S1 and S2 and S3 where
toto
system S1 (visible:u,y) =
and v = f(u)
and y = if fail then z
and y = if fail else v
and fail ∼ Bernoulli(10−6)
and z ∼ Gauss(v,sigma)
end

system S2 (visible:y) =
observe y
end

system S3 (visible:u) =
observe u>0
end

I Only the visible variables
participate in interactions
(define state space Q)

I Prior distributions are
independent

I observe y specifies that the
value of y is known;
observe u>0 states that this
predicate is true

I We can first define S1 and then
indicate via S2 where the
sensors are and via S3 the
nondeterministic information we
have on u



I have a dream

problem P1 in system S1 and S2 and S3 where
toto
system S1 (visible:u,y,z,α) =
and v = f(u)
and y = if fail then z
and y = if fail else v
and fail ∼ Bernoulli(α)
and z ∼ Gauss(v,sigma)
end

system S2 (visible:y) =
observe y
end

system S3 (visible:u) =
observe u>0
end

problem P1 (visible:u,z) =
estimate u,z
end

I estimate implemented by
various algorithms



I have a dream

problem P2 in system S1 and S2 and S3 where
toto
system S1 (visible:u,y,z,α) =
and v = f(u)
and y = if fail then z
and y = if fail else v
and fail ∼ Bernoulli(α)
and z ∼ Gauss(v,sigma)
end

system S2 (visible:y) =
observe y
end

system S3 (visible:u) =
observe u>0
end

problem P2 (visible:α) =
estimate α
end

I estimate implemented by
various algorithms



I have a dream

problem P1 and P3 in system S1 and S2 and S3 where
toto
system S1 (visible:u,y,z,α) =
and v = f(u)
and y = if fail then z
and y = if fail else v
and fail ∼ Bernoulli(α)
and z ∼ Gauss(v,sigma)
end

system S2 (visible:y) =
observe y
end

system S3 (visible:u) =
observe u>0
end

problem P1 (visible:u,z) =
estimate u,z
end

problem P3 (visible:α) =
test α > 0
end

I test implemented by
various algorithms



I have a dream

What about semantics?
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Probabilistic models: existing approaches

I A good tutorial is [Sokolova and de Vink 2004]

I Objective: models that subsume both nondeterministic
automata and Markov chains

I Ingredients: states q, actions α, and probabilities π
(over states and possibly actions), with various mixes:

q α−→ π  q′ Simple Segala PA (Markov Decision Process)
q −→ π  (α, q′) Segala PA (Semi-Markov chain)

−→: nondeterministic choice; : probabilistic choice



Probabilistic models: existing approaches

q α−→ π  q′ Simple Segala PA
q −→ π  (α, q′) Segala PA

I The notions of simulation relation rely on extending relations
between states to relations between probabilities on states:

ρ ⊆ Q × R extended to ρP ⊆ P(Q)× P(R) defined by

(πQ, πR) ∈ ρP iff ∃µ ∈ P(Q×R) :

{
µ projects to πQ, πR

support(µ) = ρ

I (Bi)simulation theory works well.



Probabilistic models: existing approaches

q α−→ π  q′ Simple Segala PA
q −→ π  (α, q′) Segala PA

I Parallel composition is problematic
(with the exception of simple Segala PA)

I The problem is the conflict between:

I Performing probabilistic choice π  
I Synchronizing on common actions



Probabilistic models: alternative idea for the ‖

q α−→ π  q′ Simple Segala PA keep as such
q −→ π  (α, q′) Segala PA alternative

(q1, q2) −→ π1⊗π2  ((α1, q′1); (α2, q′2))
??

=⇒ (α1α2, (q′1, q
′
2))

Idea: take “α1α2 defined” as a constraint and use conditional
probability distributions: π1⊗π2 given that α1α2 is defined:

(q1, q2) −→ π1⊗π2(. | α1α2 defined)  ((α1, q′1); (α2, q′2))
=⇒ (α1α2, (q′1, q

′
2))

Requires π1⊗π2(α1α2 defined) > 0, a consistency condition.

Thm: If (α1, α2) 7→ α1α2 is commutative and associative,
then, this parallel composition is commutative and associative

We can do much better
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Mixed (static) Systems (MS) [Benveniste et al.1995]

Intuition:

x

y

Q
C

(Ω, π)

I (Ω, π): probability space, private
I Q: state space, Q = dom(x , y), (x , y) visible variables
I C(ω; x , y) ⊆ Ω× Q : a relation
I Operational semantics:

1. draw ω at random according to conditional distrib π(. | ∃q.C)
2. select q nondeterministically, such that C(ω, q) holds



Mixed (static) Systems (MS) [Benveniste et al.1995]

Parallel composition:

(Ω1, π1)× (Ω2, π2)

xy1 y2

C1 ∧ C2

Q = dom(x , y1, y2)

the parallel composition
subsumes both
I the direct product

of probability
spaces

I the conjunction of
systems of
equations

C1
(Ω1, π1) Q1

x

y1

x

y2

Q2
C2

(Ω2, π2)
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Mixed (static) Systems (MS) [Benveniste et al.1995]

We assume an underlying set of variables X ; Q = Dom(X )

I X ⊆ X finite subset; Q = Dom(X ); q generic element of Q
I q1 u q2 iff qi agree on X1 ∩ X2; q1 t q2 is the join of q1 and q2



Mixed (static) Systems (MS) [Benveniste et al.1995]

We assume an underlying set of variables X ; Q = Dom(X )

I X ⊆ X finite subset; Q = Dom(X ); q generic element of Q
I q1 u q2 iff qi agree on X1 ∩ X2; q1 t q2 is the join of q1 and q2

Mixed Systems (MS) S = ((Ω, π),Q,C), where

(Ω, π) : (finite or denumerable) probability space
Q : state space
C : relation ⊆ Ω× Q

semantics S  q : draw ω using π(. | ∃q.C); select q ∈ C(ω, .)

π(. | ∃q.C) is the conditional distribution π given that ∃q.C holds.
Ensures that there will exist a q related to randomly generated ω.



Mixed (static) Systems (MS) [Benveniste et al.1995]

Mixed Systems (MS): S = ((Ω, π),Q,C), where

(Ω, π) : probability space
Q : state space
C : relation ⊆ Ω× Q

semantics S  q : draw ω using π(. | ∃q.C); select q ∈ C(ω, .)

Compressing S

ω ∼ ω′ iff C(ω, .) = C(ω′, .) (ω and ω′ are indistinguishable via Q)
define [S] = ((Ω, π)/∼,Q,C/∼) compressed form

Thm: S and [S] possess identical semantics.
The compressed form is a canonical form.



Mixed (static) Systems (MS) [Benveniste et al.1995]

Mixed Systems (MS): S = ((Ω, π),Q,C), where

(Ω, π) : probability space
Q : state space
C : relation ⊆ Ω× Q

semantics S  q : draw ω using π(. | ∃q.C); select q ∈ C(ω, .)

Extending a relation ρ, from states to Mixed Systems

ρ ⊆ Q × R extended to ρS ⊆ S(Q)× S(R) defined by

(SQ,SR) ∈ ρS iff ∃µ ∈ P(ΩQ×ΩR) :

{
µ projects to πQ, πR

µ has support (C,C)−1(ρ)

Thm: Compression is a congruence wrt lifted relations:

(S1,S2) ∈ ρS and [S′1] = [S1] imply (S′1,S2) ∈ ρS



Mixed (static) Systems (MS) [Benveniste et al.1995]

Mixed Systems (MS): S = ((Ω, π),Q,C), where

(Ω, π) : probability space
Q : state space
C : relation ⊆ Ω× Q

semantics S  q : draw ω using π(. | ∃q.C); select q ∈ C(ω, .)

S1 ‖ S2 = ((Ω, π),Q,C), where:

(Ω, π) = (Ω1 × Ω2, π1 ⊗ π2)

Q = Q1 t Q2 =def {q1 t q2 | qi ∈ Qi , q1 u q2}
C = {((ω1, ω2); q1 t q2) | (ωi , qi) ∈ Ci , q1 u q2}

Thm: ‖ is associative and commutative, and
[
S1‖S2

]
=

[
[S1]‖[S2]

]
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Mixed Markov Decision Processes (MMDP)

Idea: use Mixed Systems as targets of transitions

from q α−→ q′ to q α−→ π and to q α−→ S

Mixed Markov Decision Processes (MMDP)

I q: state
I α: action
I S: Mixed System



Mixed Markov Decision Processes (MMDP)

I MMDP M = (A,Q,→), where

q α−→ S = ((Ω, π),Q,C) q′

αα′ defined iff α = α′ and then αα′ =def α

I Simulation relation q1 ≤ q2

∀α : q1
α−→ S1 =⇒ ∃S2 : q2

α−→ S2 and S1 ≤S S2

and define M1≤M2 iff q0,1 ≤ q0,2.
I M1 ‖M2

q1 t q2
α−→ S1 ‖ S2  q′1 t q′2

Thm: ‖ is associative, commutative, and monotonic:
M ′i ≤ Mi implies M ′1 ‖M ′2 ≤ M1 ‖M2



Mixed Markov Decision Processes (MMDP)

S1 and S2 and S3 where

system S1 (visible:u,y) =
and v = f(u) + pre y
and y = if fail then z
and y = if fail else v
and fail ∼ Bernoulli(10−6)
and z ∼ Gauss(v,sigma)
end

system S2 (visible:y) =
observe y
end

system S3 (visible:u) =
observe u>0
end

I Conservative extension of
Lustre with observers

I Only the visible variables
participate in interactions
(define state space Q)

I Prior distributions are
independent
(in space and time)

I observe y specifies that the
value of y is known;
observe u>0 states that this
predicate is true
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Link between MMDP and PA [Segala et al.]

I Simple PA (SPA):
I There exists an embedding SPA 7→ MMDP preserving both

simulation and parallel composition
I There exists an embedding MMDP 7→ SPA preserving

simulation. Parallel composition cannot be preserved.

I PA:
I There exists an embedding PA 7→ MMDP preserving

simulation. Parallel composition not preserved.
I There exists an embedding MMDP 7→ PA preserving

simulation. Parallel composition cannot be preserved.

I Sokolova & de Vink Most General Model can be mapped to
MMDP by preserving simulation (but not parallel composition).

The interest of MMDP is its unique clean parallel composition and
support for conditioning.
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Mixed Interfaces (sketch)

The following is not developed in this presentation
(a Fossacs rejection):

I We have developed an interface theory on top of MMDP,
called Mixed Interfaces

I It offers all the algebra of contracts (except for the quotient)
=⇒ support for multi-view and concurrent system design

I Would make sense to formulate a logic for Mixed Interfaces
as a specification formalism for probabilistic programming



mixed feelings
about

mixed systems?
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